首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic carbon (SOC) pool is the largest among terrestrial pools. The restoration of SOC pool in arable lands represents a potential sink for atmospheric CO2. Restorative management of SOC includes using organic manures, adopting legume-based crop rotations, and converting plow till to a conservation till system. A field study was conducted to analyze soil properties on two farms located in Geauga and Stark Counties in northeastern Ohio, USA. Soil bulk density decreased with increase in SOC pool for a wide range of management systems. In comparison with wooded control, agricultural fields had a lower SOC pool in the 0–30 cm depth. In Geauga County, the SOC pool decreased by 34% in alfalfa (Medicago sativa L.) grown in a complex rotation with manuring and 51% in unmanured continuous corn (Zea mays L.). In Stark County, the SOC pool decreased by 32% in a field systematically amended with poultry manure and 40% in the field receiving only chemical fertilizers. In comparison with continuous corn, the rate of SOC sequestration in Geauga County was 379 kg C ha−1 year−1 in no-till corn (2 years) previously in hay (12 years), 760 kg C ha−1 year−1 in a complex crop rotation receiving manure and chemical fertilizers, and 355 kg C ha−1 year−1 without manuring. The rate of SOC sequestration was 392 kg C ha−1 year−1 on manured field in Stark County.  相似文献   

2.
The study was based on data from selected long-term field trials established at the Experimental Fields of the Institute of Field and Vegetable Crops, Novi Sad (Serbia). The effect of tillage systems on SOC concentration and SOC stock was most pronounced at 0–10 cm depth. In a 0–40 cm soil layer, in a 7-year period, no-till (NT) sequestrated 863 kg SOC ha?1 yr?1 more compared to moldboard plow tillage (PT), while the effects of disc tillage (DT) and chisel tillage (CT) were not significantly different. Unfertilized three-crop rotation (CSW) compared to two-crop rotation (CW) enhanced SOC storage in a 0–30 cm soil layer by 151 kg C ha?1 yr?1 in a 56-year period. Within fertilized treatments, SOC concentration was highest under continuous corn (CC). Mineral fertilization (F) non-significantly increased the SOC stock compared to no fertilization in corn monoculture in a 32-year period. The incorporation of mineral fertilizers and harvest residues (F + HR) and mineral fertilizers and farmyard manure (F + FYM) sequestered 195 and 435 kg C ha?1 yr?1 more than the unfertilized plot, respectively, in a 0–30 cm soil layer, in a 35-year period. Irrigation did not significantly affect SOC sequestration.  相似文献   

3.
为解决麦玉轮作体系小麦秸秆直接粉碎还田存在的弊端,基于多年麦玉秸秆还田定位试验,筛选高产-节本-地力提升为一体的还田模式。选择4种还田模式,即小麦玉米秸秆均不还田(WN-MN,CK1)、小麦玉米秸秆均粉碎还田(WC-MC,CK2)、小麦高留茬还田(WH-MN)和小麦高留茬-玉米粉碎还田(WH-MC)为研究对象,比较其产量表现、土壤有机碳贮量盈亏、碳库管理指数等指标,评价将小麦秸秆粉碎还田改成高留茬还田后形成的还田模式与两季秸秆均粉碎还田的优劣。结果表明,与WN-MN相比,WC-MC和WH-MC的土壤碳储量分别增加24.23%和16.05%;与试验开始前土壤有机碳储量相比,4种还田模式的土壤碳固持为–0.83~6.14 Mg·hm–2;维持土壤初始碳储量水平的最小碳投入量为4.06 Mg·hm–2·a–1。各处理不稳定有机碳组分的含量随着土层加深呈下降趋势。与WN-MN相比,WC-MC、WH-MC和WH-MN显著增加了0~20 cm表层不稳定碳组分的含量;WC-MC和WH-MC也显著增加了各土层的碳库管理指数。2015—2016周年产量,WC-MC、WH-MC平均较其他两个处理分别增加了34.5%、20.1%;2016—2017周年产量,以WH-MC最高,较其他处理平均高出11.1%。小麦高留茬-玉米粉碎还田模式下土壤有机碳储量、不稳定有机碳组分、碳库管理指数和作物产量均较高,且节本增效,表明该模式有利于关中平原麦玉轮作体系粮食生产可持续发展。  相似文献   

4.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

5.
有机农业发展的低碳机理分析   总被引:1,自引:0,他引:1  
温室气体排放引起的全球气候变暖是人类关注的环境热点问题之一。本文从农业生态系统影响全球变暖的主要温室气体(CO2、N2O 和CH4)的产生和排放出发, 探讨有机农业在生产减排和土壤固碳方面的机理。研究发现相对于常规农作而言, 有机农业在减排和固碳方面具有很大优势和潜力; 然而, 从长期来看, 通过土壤固碳减少大气温室气体的排放不是无限制的, 到一定程度后会达到一个平衡。因此, 更多的有效固碳途径和管理措施有待于进一步研究。同时, 从低碳理念出发, 强调中国加强有机农业环境效益研究的必要性。  相似文献   

6.
Managed pastures have potential for C and N sequestration in addition to providing forage for livestock. Our objectives were to investigate changes in soil organic C (SOC) and soil organic N (SON) concentrations and mineralizable C and N in cattle (Bos indicus) grazed bermudagrass [Cynodon dactylon (L.) Pers.] pastures up to 32 y after establishment. Management included low- and high-grazing intensity, fertilization, and winter overseeding with annual ryegrass (Lolium multiflorum Lam.) and clover (Trifolium sp.). Soil (0-15 cm) was sampled 7, 15, 26, and 32 y after establishment of Coastal and common bermudagrass pastures. No significant differences in SOC or SON concentrations were observed between Coastal and common bermudagrass pastures. Grazing strategies played important roles in C and N sequestration, as high-grazing intensity resulted in a lower increase in SOC and SON concentrations over time compared to low-grazing intensity. Increases in SOC were observed up to 26 y, while increases in SON were observed up to 32 y after establishment of bermudagrass pastures. Soil organic C increased 67 and 39% from 7 to 26 y at low-grazing intensity for bermudagrass+ryegrass and bermudagrass+clover pastures, respectively. SOC and SON concentrations did not increase beyond 15 y after bermudagrass establishment at high-grazing intensity. An exception was the Coastal bermudagrass+ryegrass pastures, which exhibited higher SON at 32 y than at 7 y at both grazing intensities. By 32 y, SON increased 83 and 45% in Coastal bermudagrass+ryegrass pastures at low- and high-grazing intensity, respectively, compared to 7 y. The introduction of clover to pastures decreased SOC and SON relative to ryegrass at high- but not at low-grazing intensity. Potentially mineralizable C increased from 7 to 15 y, while mineralizable N increased from 7 to 32 y. Potentially mineralizable N was also greater for bermudagrass+clover than bermudagrass+ryegrass pastures. Long-term increases in SOC and SON concentrations suggest that managed and grazed pastures have strong potential for C and N sequestration.  相似文献   

7.
Abstract. This study was undertaken to test the hypothesis that an improved system of catchment management in combination with appropriate cropping practices can sustain increased crop production and improve soil quality of Vertisols, compared with prevailing traditional farming practices. Initiated in 1976, the improved system consisted of integrated land management to conserve soil and water, with excess rainwater being removed in a controlled manner. This was combined with improved crop rotation (legume based) and integrated nutrient management. In the traditional system, sorghum or chickpea was grown in the post-rainy season with organic fertilizers, and in the rainy season the field was maintained as a cultivated fallow. The average grain yield of the improved system over 24 years was 4.7 t ha−1 yr−1, nearly a five-fold increase over the traditional system (about 1 t ha−1 yr−1). There was also evidence of increased organic C, total N and P, available N, P and K, microbial biomass C and N in the soil of the improved system. A positive relationship between soil available P and soil organic C suggested that application of P to Vertisols increased carbon sequestration by 7.4 t C ha−1 and, in turn, the productivity of the legume-based system, thus ultimately enhancing soil quality.  相似文献   

8.
Long-term soil carbon (C) dynamics in agro-ecosystems is controlled by interactions of climate, soil and agronomic management. A modeling approach is a useful tool to understand the interactions, especially over long climatic sequences. In this paper, we examine the performance of the Agricultural Production Systems sIMulator (APSIM) to predict the long-term soil C dynamics under various agricultural practices at four semi-arid sites across the wheat-belt of eastern Australia. We further assessed the underlying factors that regulate soil C dynamics in the top 30 cm of soil through scenario analysis using the validated model. The results show that APSIM is able to predict aboveground biomass production and soil C dynamics at the study sites. Scenario analyses indicate that nitrogen (N) fertilization combined with residue retention (SR) has the potential to significantly slow or reverse the loss of C from agricultural soils. Optimal N fertilization (Nopt) and 100% SR, increased soil C by 13%, 46% and 45% at Warra, Wagga Wagga and Tarelee, respectively. Continuous lucerne pasture was the most efficient strategy to accumulate soil C, resulting in increases of 49%, 57% and 50% at Warra, Wagga Wagga and Tarlee, respectively. In contrast, soil C decreases regardless of agricultural practices as a result of cultivation of natural soils at the Brigalow site. Soil C input, proportional to the amount of retained residue, is a significant predictor of soil C change. At each site, water and nitrogen availability and their interaction, explain more than 59% of the variation in soil C. Across the four sites, mean air temperature has significant (P < 0.05) effects on soil C change. There was greater soil C loss at sites with higher temperature. Our simulations suggest that detailed information on agricultural practices, land use history and local environmental conditions must be explicitly specified to be able to make plausible predictions of the soil C balance in agro-ecosystems at different agro-ecological scales.  相似文献   

9.
The role of the organic carbon occluded within phytoliths (referred to in this text as ‘PhytOC‘) in carbon sequestration in some soils is examined. The results show that PhytOC can be a substantial component of total organic carbon in soil. PhytOC is highly resistant to decomposition compared to other soil organic carbon components in the soil environments examined accounting for up to 82% of the total carbon in well-drained soils after 1000 years of organic matter decomposition. Estimated PhytOC accumulation rates were between 15 and 37% of the estimated global mean long-term (i.e. on a millenial scale) soil carbon accumulation rate of 2.4 g C m−2 yr−1 indicating that the accumulation of PhytOC within soil is an important process in the terrestrial sequestration of carbon. The rates of phytolith production and the long-term sequestration of carbon occluded in phytoliths varied according to the overlying plant community. The PhytOC yield of a sugarcane crop was 18.1 g C m−2 yr−1, an accumulation rate that is sustainable over the long-term (millenia) and yet comparable to the rates of carbon sequestration that are achievable (but only for a few decades) by land use changes such as conversion of cultivated land to forest or grassland, or a change of tillage practices from conventional to no tillage. This process offers the opportunity to use plant species that yield high amounts of PhytOC to enhance terrestrial carbon sequestration.  相似文献   

10.
Abstract. Soil organic (SOC) and inorganic carbon (SIC) stocks of Kenya were determined using four different methods to provide baseline data. The assessments used an updated version of the 1:1 M soil and terrain database for the country. Estimates for national SOC stocks to 1 m depth ranged from 3452 to 3797 Tg C. The findings highlight the need for comprehensive databases of soil and terrain data of good quality that consider more than one representative profile per soil component. The 95% confidence limits for the median, area-weighted SOC content were largest in the humid highlands (15.4–15.7 kg C m−2) and smallest in the hot arid zone (4.4–4.5 kg C m−2). Conversely, for SIC these values were largest in the arid zone (4.3–4.5 kg C m−2) and smallest in high rainfall areas (<0.1 kg C m−2). Many croplands in Kenya have been over-exploited, resulting in nutrient depletion and loss of organic matter. The SOC gains considered ecologically and technically feasible upon improved management of croplands were estimated at 5.8–9.7 Tg C over the next 25 years. This corresponds to an estimated annual mitigation potential of 5–9% of Kenya's CO2-C emissions from fossil fuels, cement manufacturing and land use change for 1990.  相似文献   

11.
The effects of manure and chemical fertilizer on soil bulk density, soil organic carbon (SOC), and the role of carbon management index (CMI) in soil quality evaluation were studied under a double-cropping rice system in a long-term experiment. The experiment included five fertilizer treatments: without fertilizer input (CK), chemical fertilizer alone (MF), rice straw residue plus chemical fertilizer (RF), 30% organic matter plus 70% chemical fertilizer (LOM), and 60% organic matter plus 40% chemical fertilizer (HOM). RF, LOM, HOM treatments increased SOC content relative to MF treatment in the paddy fields at 0–20 cm. RF, LOM, HOM treatments were more effective for increasing CMI, lability index, lability of C, and SOC stocks, as compared with MF treatment. Based on rice grain yield and carbon storage, integrated fertilization of chemical fertilizer and organic manure proved to be the most effective practices for improving crop productivity and SOC sequestration.  相似文献   

12.
Recently, soil carbon sequestration in agro-ecosystems has been attracting significant interest as soil organic carbon (SOC) can potentially offset some atmospheric carbon dioxide. The objectives of this study were to use the RothC model to simulate soil carbon sequestration and determine the proportion of pasture production as carbon input for SOC sequestration under different pasture types and pasture management in a long term experiment established in 1992. There were two types of pastures, annual and perennial pastures, with or without application of limestone. Simulation results showed that with an initial setting for the stubble retention factor of 0.65 and root/shoot ratio of 0.5 for annual pasture and 1.0 for perennial pasture, RothC can adequately simulate SOC for both pasture types, especially annual pasture. Using an inverse modelling technique, the root/shoot ratio was determined as 0.49 and 0.57 for annual pasture and 0.72 and 0.76 for perennial pasture with and without limestone application, respectively. There was a large improvement in model performance for perennial pasture with and without limestone application. The root mean squared errors (RMSE) reduced from 3.19 and 2.99 t C ha−1 in the initial settings to 2.09 and 2.10 t C ha−1, while performance efficiency (PE) increased from 0.89 and 0.91 to the same value of 0.95 when the root/shoot ratio of 0.72 and 0.76 were used for limed and unlimed perennial pastures. However, there was little improvement for annual pasture as RMSE had little change and PE was the same. As the stubble retention factor and root/shoot ratio can be combined into one factor that measures an equivalent amount of total above-ground pasture production allocated for soil carbon input, the modelled results can be summarised as 1.2 times and 1.4 times the above-ground dry matter for annual and for perennial pasture, respectively, regardless of liming. Our results provide useful information for simulation of soil carbon sequestration under continuous pasture systems.  相似文献   

13.
14.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

15.
黑土有机质含量丰富,但随着农业活动加剧,以及黑土区低温特性的限制,土壤有机质大量流失。不同有机物料还田是提升土壤有机质的重要方式,然而目前仍缺少对不同有机物料还田具体恢复效果及过程的评价。该研究使用Meta分析的方法,对2000年1月—2022年9月经同行评议的文章进行整合分析,综合了41篇文献中2 012个观测值,设定低、中、高年限及碳投入量,评估秸秆还田和有机肥还田对黑土土壤有机碳固存的影响。结果表明,有机肥还田处理的土壤有机碳、土壤总氮、土壤总磷含量均高于秸秆还田。随着处理年限的增加,有机肥还田对于土壤有机碳含量的增加效果优于秸秆还田。此外,不同碳投入的条件下,有机物料还田对于土壤碳固存影响不同,其中在中碳投入的条件下,有机肥还田有机碳含量(65.62%)显著高于秸秆还田(20.07%)。21 a以上的长期中碳投入下有机肥还田更有利于黑土土壤有机碳固存的增加。该研究为黑土区有机物料还田的选择提供科学依据。  相似文献   

16.
不同耕作措施下江苏省稻田土壤固碳潜力的模拟研究   总被引:8,自引:0,他引:8  
以江苏省稻田为对象,整合DNDC和1:100万土壤数据库,以土壤图斑为基本模拟单元,定量估算少耕、免耕和综合措施(少耕 + 30% 秸秆还田)下江苏省稻田土壤的固碳潜力(0 ~ 30 cm)。模拟结果表明:相对于传统耕作,采用少耕、免耕和少耕 + 30% 秸秆还田均可明显地增加稻田SOC的积累,其在2009—2050年间的固碳潜力分别为24.5、47.7和43.8 Tg。免耕和少耕 + 30% 秸秆还田条件下稻田固碳速率大约是少耕的2倍。结合实际情况,少耕 + 30% 秸秆还田将是最可行的固碳措施之一。  相似文献   

17.
土壤团聚体中有机碳研究进展   总被引:60,自引:4,他引:60  
增加土壤有机碳有助于农业可持续发展, 同时对缓解温室气体增加造成的全球气候变暖等具有重要意义。土壤团聚体是土壤的重要组成部分, 影响土壤的各种物理化学性质。土壤团聚体和有机碳是不可分割的, 前者是后者存在的场所, 后者是前者存在的胶结物质。本文在综合各方面研究的基础上, 阐述了土壤团聚体和有机碳的依存关系, 影响团聚体固碳的几大因素, 团聚体对有机碳的物理保护机制以及目前应用比较广泛的团聚体内有机碳的研究方法, 为以后的研究提供理论和方法上的支持。  相似文献   

18.
Abstract. In Australia, stubble burning and tillage are two of the major processes responsible for the decline of soil organic carbon concentration in cropped soils, and the resulting soil degradation. However, the relative importance of these two practices in influencing the soil organic carbon concentration and the long-term impact on soil quality and productivity are not clear. The effects of stubble burning as practised by farmers in southeastern Australia were evaluated in two field trials, one of 19 years duration, the other of 5 years. Conventional tillage (three tillage passes) led to greater loss of soil organic carbon than stubble burning. Loss of total soil organic carbon attributed to stubble burning in the 0–10 cm layer was estimated to be 1.75 t C ha−1 over the period of the 19-year trial, equivalent to 29% of that lost due to tillage. In the 5-year trial, no change in soil organic carbon due to stubble burning was detectable. Changes in soil quality associated with stubble burning detected in the longer trial included a reduction in macro-aggregate stability, and increases in pH and exchangeable K+. Only the latter two were detected in the shorter trial. A higher mean wheat yield (average 0.15 t ha−1) following stubble burning was observed in the 19-year trial but not in the 5-year trial. Research to monitor the longer term effects of stubble burning is needed, and to identify conditions where loss of soil organic carbon is minimized.  相似文献   

19.
不同施肥管理措施对土壤碳含量及基础呼吸的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
连续7年试验研究了施用15t/hm2和7.5t/hm2有机肥(包括EM堆肥、EM鸡粪肥和传统堆肥)、化肥和对照处理对土壤碳含量与基础呼吸的影响,结果表明:随有机肥施用量的提高,土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸随之增加。施用化肥可一定程度提高土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸。不同施肥措施对土壤有机碳、微生物生物量碳和土壤基础呼吸的影响趋势为EM堆肥处理>传统堆肥处理>化肥处理>对照,施肥对土壤微生物代谢商的影响趋势为EM堆肥处理<传统堆肥处理<化肥处理<对照。土壤微生物生物量碳与可溶性碳、总有机碳及土壤基础呼吸之间呈极显著正相关。土壤微生物代谢商与土壤可溶性碳、总有机碳、微生物生物量碳及基础呼吸之间呈极显著负相关。  相似文献   

20.
通过盆栽试验,研究施肥对喀斯特地区植草土壤不同活性有机碳组分和牧草固碳的影响。试验处理包括CK(不施肥)、 N1 (N 150 mg/kg)、 N2 (N 250 mg/kg)、 N1P1 (P2O5100 mg/kg)、 N2P2 (P2O5150 mg/kg)、 N1P1K1 (K2O 70 mg/kg)、 N1P1K2 (K2O 105 mg/kg)和N2P2K1和N2P2K2。结果表明,与对照(不施肥)相比,施肥处理增加植草土壤有机碳、 微生物量碳和易氧化碳,有机碳日矿化量和累积矿化量以及牧草固碳量。其中N1P1K1处理土壤有机碳和易氧化碳最高,N1P1处理土壤微生物量碳最高,N2P2K1处理土壤可溶性碳最高,N2P2K2处理牧草地上部及根系固碳量、 有机碳日矿化量和累积矿化量均最高。综上,低量氮磷钾肥配施有利于土壤活性有机碳的积累,高量氮磷钾平衡配施牧草固碳效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号