首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>随着高通量基因芯片和测序技术的快速发展,促使个体SNP基因型的判型成本快速下降,基因组范围的高密度SNP标记数据已经在家畜群体内使用。传统的LE-MAS、LD-MAS或G-MAS预测育种值的能力是有限  相似文献   

2.
旨在比较简化基因组测序技术和基因芯片技术实施基因组选择的基因组估计育种值(GEBV)准确性。本研究在AH肉鸡资源群体F2代中随机选取395个个体(其中公鸡212只,母鸡183只,来自8个半同胞家系),同时采用10×SLAF测序技术和Illumina Chicken 60K SNP芯片进行基因标记分型。采用基因组最佳无偏估计法(GBLUP)和BayesCπ对6周体重、12周体重、日均增重、日均采食量、饲料转化率和剩余采食量等6个性状进行GEBV准确性比较研究,并采用5折交叉验证法验证。结果表明,采用同一基因标记分型平台,两种育种值估计方法所得GEBV准确性差异不显著(P>0.05);不同的性状对基因标记分型平台的选择存在差异,对于6周体重,使用基因芯片可获得更高的GEBV准确性(P<0.05),对于剩余采食量,则使用简化基因组测序可获得更高的GEBV准确性(P<0.05)。综合6个性状GEBV均值比较,两个基因标记分型平台之间差异不到0.01,高通量测序技术和基因芯片技术都可以用于黄羽肉鸡基因组选择。  相似文献   

3.
标记辅助选择(MAS)及在畜禽育种工作中的应用   总被引:1,自引:0,他引:1  
近年来,标记辅助选择(MAS)的应用研究,已越来越受到畜禽育种工作者的重视。应用MAS,可以更加深入地研究数量性状遗传,使遗传学研究有了新的突破。LaMe和Thompson(1990)采用模拟研究MAS与传统指数选择相比较,结果表明:对遗传力低和家系共同效应大的性状,采用MAS的效果可比传统指数选择效果提高3~4倍。Kash等(1990)对奶牛的后备公牛采用MAS的遗传改进也表明可比传统后裔测验方法提高20%~30%。所以,MAS的应用研究前景十分广阔。  相似文献   

4.
单核苷酸多态性(single nucleotide polymorphism,SNP)是遗传学研究中重要的材料。近年来,全基因组SNP标记开发方法的发展使得研究者们能够以较低成本获得丰富的基因组标记,大大推动了基因组水平的相关研究。基因组预测从已知基因型数据和表型数据的个体建立训练模型,对未知表型的个体进行基因型和表型预测,在育种领域具有重要意义。全基因组SNP的分型策略结合基因组预测方法,构成了动物基因组选择的前沿。本文从这两个方面进行综述,以期为从事分子遗传学,尤其是复杂性状研究的研究者们提供参考。  相似文献   

5.
基因组选择是当前畜禽育种领域一项热门的分子育种方法,已经在实际育种中得到应用并取得良好的效果。基因组选择使用数学模型计算出覆盖全基因组范围内的高密度标记的效应值,从而得到个体基因组估计育种值,再进行高效的选种选配工作。该方法可以提高传统育种值估计的准确性,实现畜禽育种早期选择,缩短世代间隔,从而加快遗传进展。同时,随着第二代测序平台和基因芯片技术不断成熟,单核苷酸多态性(Single nucleotide polymorphism,SNP)标记已成为普遍且重要的动植物研究手段,SNP芯片检测成本也不再高昂。文章综述了常见的基因组选择模型及其在家禽育种中的应用,讨论了其面临的挑战,并且展望了其应用前景,为我国地方家禽保护、评价和利用提供参考。  相似文献   

6.
鲍晶晶  张莉 《中国畜牧兽医》2020,47(10):3297-3304
畜禽的选种选育在生产中至关重要,育种值估计是选种选育的核心。基因组选择(genomic selection,GS)是利用全基因组范围内的高密度标记估计个体基因组育种值的一种新型分子育种方法,目前已在牛、猪、鸡等畜禽育种中得到应用并取得了良好的效果。该方法可实现畜禽育种早期选择,降低测定费用,缩短世代间隔,提高育种值估计准确性,加快遗传进展。基因组选择主要是通过参考群体中每个个体的表型性状信息和单核苷酸多态性(single nucleotide polymorphism,SNP)基因型估计出每个SNP的效应值,然后测定候选群体中每个个体的SNP基因型,计算候选个体的基因组育种值,根据基因组育种值的高低对候选群体进行合理的选择。随着基因分型技术快速发展和检测成本不断降低,以及基因组选择方法不断优化,基因组选择已成为畜禽选种选育的重要手段。作者对一些常用的基因组选择方法进行了综述,比较了不同方法之间的差异,分析了基因组选择存在的问题与挑战,并展望了其在畜禽育种中的应用前景。  相似文献   

7.
SNP(single nucleotide polymorphism,SNP),即单核苷酸多态性,主要是指由基因组核苷酸水平上的变异引起的DNA序列多态性,包括单碱基的转换、颠换.以及单碱基的插入/缺失等。在SNP之前有过两代遗传标记:①限制性片段长度多态(restriction fragment length polymerphisms,RFLP),为20世纪70年代中后期建立起来的标记系统,在整个基因组中确定的位点可达100,000以上;②微卫星多态(microsatellite polymorphisms),  相似文献   

8.
芯片技术在畜禽育种中的应用研究进展   总被引:1,自引:0,他引:1  
中国畜禽品种资源丰富,且有许多优良性状基因,但这些优良性状基因并没有被充分利用,因此,在基因水平上开展遗传资源的开发和利用是畜禽经济性状改良的重要方向。目前,虽然传统系谱选择方法在育种工作中发挥了重要作用,但存在准确率低、育种周期长等缺点。随着分子生物学技术的快速发展,近年来先进的基因组测序和基因分型技术大大促进了畜禽育种方法的革新。从低通量、耗时的限制性片段多态标记(RFLP)到如今高通量、高密度的单核苷酸多态性(SNP)标记,基因检测效率有了大幅度提高。基因芯片技术在分子标记辅助选择和全基因组选择育种研究中逐渐得到广泛应用,成为畜禽育种的新技术手段和新热点。主要介绍了高、低密度SNP芯片技术在畜禽育种中的研究及应用,并简述了其技术优势、存在问题及挑战、应用展望,旨在表明基因芯片技术必将会成为畜禽分子育种工作中一项重要的基础技术,在畜禽种业快速发展过程中起到重要的推动作用,以期为基因芯片技术在畜禽育种中得到进一步应用提供理论参考,推进中国畜禽育种遗传进展,提升中国畜禽种业的科技竞争力。  相似文献   

9.
高密度SNP芯片及其对肉牛育种影响的研究进展   总被引:1,自引:1,他引:0  
近年来先进的测序和基因分型技术促进了肉牛育种方法的革新。从过去低通量、耗时的限制性片段多态标记(RFLP)到如今高通量、高密度的单核苷酸多态性(SNP)标记,基因检测效率大幅提高。随着肉牛基因组序列图谱及SNP图谱的完成,基于高密度SNP标记的牛全基因组选择成了牛育种的新热点。作者立足高密度SNP芯片对肉牛育种的影响,综述高密度SNP芯片及和下一代测定技术及肉牛全基因组选择的研究进展,阐明高密度SNP芯片对多品种全基因组选择的模型的建立及准确的预测基因组育种值极其重要。  相似文献   

10.
旨在探究快速型黄羽肉鸡饲料利用效率性状的遗传参数,评估不同方法所得估计育种值的准确性。本研究以自主培育的快速型黄羽肉鸡E系1 923个个体(其中公鸡1 199只,母鸡724只)为研究素材,采用"京芯一号"鸡55K SNP芯片进行基因分型。分别利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(SSGBLUP)3种方法,基于加性效应模型进行遗传参数估计,通过10倍交叉验证比较3种方法所得估计育种值的准确性。研究性状包括4个生长性状和4个饲料利用效率性状:42日龄体重(BW42D)、56日龄体重(BW56D)、日均增重(ADG)、日均采食量(ADFI)和饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)、剩余采食和增长体重(RIG)。结果显示,4个饲料利用效率性状均为低遗传力(0.08~0.20),其他生长性状为中等偏低遗传力(0.11~0.35);4个饲料利用效率性状间均为高度遗传相关,RFI、RIG与ADFI间为中度遗传相关,RFI与ADG间无显著相关性,RIG与ADG间为低度遗传相关。本研究在获得SSGBLUP方法的最佳基因型和系谱矩阵权重比基础上,比较8个性状的估计育种值准确性,SSGBLUP方法获得的准确性分别比传统BLUP和GBLUP方法提高3.85%~14.43%和5.21%~17.89%。综上,以RIG为选择指标能够在降低日均采食量的同时保持日均增重,比RFI更适合快速型黄羽肉鸡的选育目标;采用最佳权重比进行SSGBLUP分析,对目标性状估计育种值的预测性能最优,建议作为快速型黄羽肉鸡基因组选择方法。  相似文献   

11.
为探究基于A矩阵期望遗传关系最大化(maximizing the expected genetic relationship for matrix A,RELA)、基于A矩阵目标群体遗传方差最小化(minimized the target population genetic variance for matrix A,MCA)、平均亲缘关系最大化(the highest mean kinship coefficients,KIN)、随机选择(random selection,RAN)、共同祖先筛选(common ancestor,CA)等不同参考群筛选方法及参考群规模对基因型填充准确性的影响。本研究使用矮小型黄羽肉鸡作为试验群体,采用鸡600K SNP芯片(Affymetrix Axion HD genotyping array)进行基因分型,测定435羽子代公鸡45、56、70、84、91日龄体重。利用Beagle软件将低密度SNP芯片填充为高密度SNP芯片数据,比较不同参考群筛选方法、参考群规模对基因型填充准确性的影响,以及填充芯片基因组预测准确性。结果表明,使用Beagle 4.0结合系谱信息进行填充效果最佳,其次为Beagle 4.0,而Beagle 5.1填充效果最差。使用MCA方法筛选参考群进行基因型填充准确性最高,使用RAN方法筛选参考群进行基因型填充准确性最低,MCA、RELA、CA 3种方法基因型填充准确性差别较小。相比其他方法,使用MCA方法筛选个体作为参考群将低密度SNP芯片填充至高密度SNP芯片进行基因组选择的预测准确性较高,与真实高密度SNP芯片的基因组预测准确性相差甚微。随着参考群规模增大,基因型填充准确性也随之增加,但增速逐渐下降,最后趋于平缓。综上所述,可以通过参考群筛选方法构建参考群以及控制参考群规模,以保证基因型填充和基因组预测准确性并节省成本,本研究为基因型填充在畜禽遗传育种中的应用提供技术参考。  相似文献   

12.
为了解无芒雀麦(Bromus inermis)群体亲缘关系,同时挖掘控制产量相关性状的基因位点,本试验利用单核苷酸多态性(Single nucleotide ploymorphism,SNP)标记对来自国内外93份无芒雀麦进行全基因组扫描,对茎重、干草产量、节数、鲜草产量、叶重、株高、叶长、茎粗、叶宽、穗长10个重要产量性状进行全基组关联分析和群体遗传结构分析。结果表明,93份无芒雀麦共鉴定到95 708个有效SNP标记;经构建系统进化树分析,93份无芒雀麦种质材料被分成了3个类群,第I类群材料为祖先种群,第II类群材料和第III类群材料为进化分支群;通过对10个数量性状的全基因组进行关联分析,株高、穗长、茎粗、节数、叶长、叶宽、鲜草产量、干草产量、茎重、叶重分别筛选到20,24,19,21,29,19,26,31,25,33个核心SNP标记(P<0.001)。这些SNP标记经进一步筛选鉴定,可有效提高无芒雀麦新种质的分子鉴定效率,对加快无芒雀麦育种进程、加强生物多样性保护具有重要意义。  相似文献   

13.
二十一世纪初,基因组选择(Genomic Selection,GS)技术给传统奶牛育种体系带来新的活力。该方法利用基因芯片技术实现规模化的SNP标记多态检测,基于各国积累的大量后裔测定遗传评估结果,实现单个遗传标记或多个遗传标记构成单倍型的遗传效应估计。基因组选择的方法仅利用新生后备种公牛的基因组检测信息,即可实现动物个体的基因组育种值(GEBV)估计,据研究报道,其可靠性高于传统的系谱选择,最高可达75%左右。基因组选择策略实现乳用种公牛的早期选择,极大缩短了奶牛遗传改良的世代间隔,节约选育成本,提高选育效率,目前已在多个奶业发达国家具体实施并公开发布评定结果。本文对国际奶牛基因组选择的发展概况进行归纳综述。  相似文献   

14.
识别野生动物群体内潜在影响动物表型变异的相关基因是进化遗传学研究的主要目的,而动物毛色是研究动物被毛表型形成遗传机制的最佳模型之一。应用Illumina公司提供的猪60 k SNP基因芯片对选取的62只不同被毛表型的野猪个体进行基因分型,利用SNP分析结果,通过对照全基因组关联分析(GWAS)识别影响野猪被毛表型差异的相关变异。结果表明,识别了6个与野猪被毛表型相关的基因组变异区域,分别位于SSC1(ALGA0001794,ASGA0006416)、SSC2(ASGA0011559)、SSC6(H3GA0018683)、SSC7(ASGA0035535)和SSC14(ASGA0060641);最显著相关的SNP(ALGA0001794)位于猪1号染色体上(SSC1)的27 899 596-27 899 696 bp区间(P=2.96×10-(-5))。该研究初步鉴定了6个与野猪毛色性状相关的易感位点,为进一步研究野猪不同毛色性状的形成机制提供了基础。  相似文献   

15.
旨在利用基因分型测序(genotyping by sequencing,GBS)技术对梅花鹿、马鹿及其杂交后代(F1、F2)基因组的SNP特征进行分析。本试验采用GBS技术对梅花鹿(63个)、马鹿(12个)及其杂交后代(F1代112个,F2代38个,未知类型个体1个)共226个个体的血液基因组DNA进行测序,并利用本实验室前期110只梅花鹿、197只马鹿和1只F1代杂交鹿的测序数据,以梅花鹿全基因组为参考序列进行比对分析。结果,226个个体共产生Clean data 322.683 Gb,平均每个样品1 427.802 Mb;将所有样本作为一个群体检测SNP变异,共检测出SNP位点23 943 582个,质控过滤后得到SNP位点31 630个。对31 630个SNPs使用最大似然(maximum likelihood,ML)法构建的分子进化树显示,梅花鹿、马鹿、F1及F2代区分明显。对梅花鹿和马鹿的SNPs进行比对分析,筛选出可用于鉴别马鹿、梅花鹿、F1、F2的物种特异SNP位点1 032个(马鹿特异SNP位点474个,梅花鹿特异SNP位点558个),计算结果显示,F1代个体包含马鹿特异SNPs的比例主要在40%~60%之间,F2代个体含马鹿特异SNPs的比例主要在10%~30%之间,马鹿个体中不含梅花鹿的特异SNPs,梅花鹿中55.49%的个体不含马鹿特异SNPs,17.34%的个体含马鹿特异SNPs的比例低于1%,13.29%的个体含马鹿特异SNPs的比例在1%~10%之间,其余个体含马鹿特异SNPs的比例为10%~20%(其中有一个个体含马鹿特异SNPs的比例为33.3%)。该研究为花马杂交鹿后代的鉴定提供了可靠标记,并定量估计了F1和F2代个体含马鹿特异SNPs的比例,马鹿个体中不含梅花鹿的特异SNPs,这对梅花鹿、马鹿及其杂交后代(F1、F2)的鉴别具有重要意义。  相似文献   

16.
单核苷酸多态性(single nucleotide polymorphism,SNP)是遗传学研究中重要的材料。近年来,全基因组SNP标记开发方法的发展使得研究者们能够以较低成本获得丰富的基因组标记,大大推动了基因组水平的相关研究。基因组预测从已知基因型数据和表型数据的个体建立训练模型,对未知表型的个体进行基因型和表型预测,在育种领域具有重要意义。全基因组SNP的分型策略结合基因组预测方法,构成了动物基因组选择的前沿。本文从这两个方面进行综述,以期为从事分子遗传学,尤其是复杂性状研究的研究者们提供参考。  相似文献   

17.
《养猪》2012,(2):59-59
产肠毒素大肠杆菌(ETEC)F4ac是引起仔猪断奶前腹泻最主要的细菌性病原,仔猪小肠上皮细胞有无ETECF4ac受体是仔猪被感染时是否发病的关键。任军等(2012)利用大规模资源家系群体和远缘群体,通过全基因组连锁定位分析、目的区域的重组断点事件分析和远缘群体高通量SNP标记的关联性分析等严谨的遗传学分析手段,确定了ETECF4ac受体基因为MUC13,  相似文献   

18.
全基因组关联分析(genome-wide association studies,GWAS)是研究家畜复杂经济性状和疾病遗传变异的有效方法,GWAS的核心是挖掘遗传变异与目标表型性状间的关系.随着牛全基因组测序工作完成,海量单核苷酸多态性(single nucleotide polymorphism,SNP)位点被标记...  相似文献   

19.
全基因组关联分析(Genome-Wide Association Studies,GWAS)技术已广泛应用于筛选动物某特定性状SNP分子标记。本研究将503头丹系长白后备种猪全基因组测序结果与胸围、尻长和外阴长宽等体尺性状进行了关联分析,探讨与猪“二胎综合征”紧密相关的SNP。关联结果显示,关联到1个与胸围性状显著相关的SNP,2个与尻长性状显著相关的SNP,与这3个SNP相邻的6个基因中,3个基因(NPBWR1、BRINP3和SPACA3)已具有功能注释,另外3个基因(ST18、ENSSSCG00000010811和ENSSSCG00000030066)暂无基因功能注释,没有关联到与外阴尺寸性状显著相关的SNP。本研究结果可为后续开展无“二胎综合征”种猪选育奠定一定的工作基础。  相似文献   

20.
猪育种中DNA标记辅助选择方法的研究进展   总被引:1,自引:0,他引:1  
DNA标记辅助选择(简称MAS)为猪的育种提供了一个新的突破性方法,作者将从MAS的原理和实施方案、猪的基因图谱、猪育种中的若干重要DNA标记、MAS应用效果的理论研究和MAS应用实践等方面,综述其在猪育种中的应用研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号