首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of organic matter was studied in clay (< 2 μm), fine silt (2-6.3 μm), medium silt (6.3-20 μm), coarse silt (20-63 μm) and sand (63-2000 μm) fractions of the Ap-horizon of a clay loam (Orthic Humic Gleysol) from Bainsville (Ottawa, Canada) by organic C and total N analyses and pyrolysis-field ionization mass spectrometry (Py-FIMS). The C and N contents were largest in fine silt and medium silt and smaller in coarse silt and sand. Differences in the contents of organic matter and absorbed water were significantly (r= 0.945***) reflected by the amounts of volatilized matter during Py-FIMS. The Py-FI therniograms and mass spectra showed clear differences in thermal stability and molecular composition of organic matter between the organo-mineral size-fractions. Abundances of carbohydrates, phenols and lignin monomers, alkylaromatics and N-containing compounds decreased, whereas abundances of lignin dimers and lipids increased with increasing equivalent diameters. An exception was the sand fraction which was dominated by the characteristic features of plant residues. The six compound classes, calculated using signals of biomarkers, accounted for 35% to 60% of the recorded total ion intensity. The thermal evolution of the selected compound classes, which are important constituents of soil organic matter (SOM), indicated the stability of humic and organo-mineral bonds in particle-size fractions, Moreover, the influence of mineral matrix on organic matter composition was shown by significant correlations between relative abundances of carbohydrates, N-containing compounds, lipids, lignin dimers, and proportions of phyllosilicates.  相似文献   

2.
This study aimed to reveal differences in the relevance of particulate as well as water-soluble organic matter (OM) fractions from topsoils to the easily biodegradable soil organic matter (SOM). We selected eight paired sites with quite different soil types and soil properties. For each of these sites, we took samples from adjacent arable and forest topsoils. Physically uncomplexed, macro-, and micro-aggregate-occluded organic particle, as well as water-soluble OM fractions were sequentially separated by a combination of electrostatic attraction, ultrasonic treatment, density separation, sieving, and water extraction. The easily biodegradable SOM of the topsoil samples was determined by measuring microbial respiration during a short-term incubation experiment (OCR). The organic carbon (OC) contents separated by i) the physically uncomplexed water-soluble OM, ii) the macro-, and iii) the micro-aggregate-occluded organic particle as well as water-soluble OM fractions were significantly correlated with OCR. The correlation coefficients vary between 0.54 and 0.65 suggesting differences in the relevance of these OM fractions to the easily biodegradable SOM. The strongest correlation to OCR was detected for the OC content separated by the physically uncomplexed water-soluble OM indicating the most distinct relation to the easily biodegradable SOM. This was found to be independent from land use or soil properties.  相似文献   

3.
Soil samples were fractionated by sedimentation in water and by flotation in heavy liquids to separate complexed and uncomplexed organic and inorganic components. Flocculation of clays in heavy organic liquids was delayed by addition of a surfactant. Heavy liquids and surfactants sorbed by soil components were removed by washing with acetone-water mixtures.In a sample of a red-brown earth, the organic carbon and nitrogen contents were highest in the finest separates. In samples of a ground-water rendzina and a chernozemic soil, the coarse clay and silt separates had the highest organic carbon and nitrogen contents. Organic matter was concentrated in low density fractions in all separates. Carbon/nitrogen ratios were lowest in the finer and heavier separates. Calcium, and to a lesser extent manganese, iron and phosphorus, were concentrated in low density fractions: thus these elements appear to be associated with organic matter and may be important in organo-mineral complex formation. Carbonates, titanium, iron, silicon and potassium were concentrated at the highest densities.Organic fractions < 2.06 g cm?3 from sand size separates were insoluble in alkali and had wide carbon/nitrogen ratios characteristic of plant debris. The light fractions from fine silt and coarse clay separates were more soluble in alkali but showed high ratios of humic to fulvic materials and high absorption at 280 nm. Such materials were considered to be microbial cell debris and were associated with high contents of disordered aluminium and iron oxides and expanding lattice silicates in 1 to 5 μm aggregates.Heavier fractions, particularly of finer clay separates, contained more fulvic and humic materials of a more aliphatic nature than those in < 2.06 g cm?3 fractions. It is suggested that physical sorption on clay surfaces may be more important in these fractions. Ellite and kaolinite were concentrated in medium density fractions, and contents of some iron oxides and titanium minerals were highest in fractions > 2.06 g cm?3. Such minerals plus quartz and feldspars were associated with minor amounts of organic matter or possibly were not involved in organo-mineral associations.  相似文献   

4.
Abstract

Many of the cultivated soils of sub‐Saharan Africa typically have a surface horizon low in clay and with a low cation exchange capacity (CEC). In these soils, CEC is largely due to the soil organic matter (SOM). Measurements made on long‐term trials show that changes in CEC and SOM are positively correlated to one another, but not of same magnitude, suggesting that not all of the SOM plays an equal role as regards the soil CEC. To study the influence of the different SOM size fractions on the CEC, soils with or without application of manure or compost coming from trials in Chad and Côte d'Ivoire were separated without destruction of the SOM into five organo‐mineral fractions: “coarse sand”;, “fine sand”;, “coarse silt”;, “fine silt”;, and “clay”; made up of particles of sizes between 2,000 and 200, 200 and 50, 50 and 20, 20 and 2, and 2 and 0 μm, respectively. Fractionation was carried out by mechanical dispersion of the soil, wet sieving of the fractions larger than 20 μm, and decanting of the “clay”; and “fine silt”; fractions. The CEC of these fractions increases inversely with their size. The “clay”; fraction which contains half of the SOM contributes about 80% of the CEC of the soils. The CEC of the fractions is largely a function of their carbon (C) content, but the organic CEC per unit C of the “clay”; fraction appears to be four times greater than that of the other fractions (1,000 as against 270 cmolc kg‐1). Applications of manure or compost increase the CEC of the soils by increasing the soil C only when this C increase concerns the fine fractions of the SOM.  相似文献   

5.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

6.
 The effects of a composted organic amendment and solarization on the organic matter (OM) of a sandy soil were determined by means of particle-size fractionation and analysis of carbon and nitrogen contents. After 2 years, total soil carbon increased under organic fertilization but did not significantly change with solarization. As a consequence of the climatic conditions in the greenhouse, the carbon concentrations (g kg–1 fraction) of the particle-size fractions were lower than those found for temperate soils and closer to those for tropical soils. The carbon amounts (g kg–1 soil) and carbon:nitrogen ratios, which were highest in fractions >200 μm, reflected the short-term influence of the industrially processed organic amendment, rich in composted coarse plant debris. In contrast, the characteristics of the OM associated with each fraction were not significantly affected by solarization. In comparison with other coarse-textured temperate or tropical soils, carbon concentrations in fine silt (2–20 μm) and clay (0–2 μm) fractions were very low. This suggests a "greenhouse effect", together with a high rate of carbon mineralization affecting fine silt and clay fractions. Received: 19 November 1999  相似文献   

7.
Soil organic matter can be divided into different organic carbon (C) pools with different turnover rates. The organic pollutants in soils associated with these organic C pools may have different bioavailability and environmental risks during the decomposition of soil organic matter. We studied the distribution patterns of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in different particle‐size separates (clay, fine silt, coarse silt, fine sand and coarse sand) and density fractions (light and heavy fractions) of nine agricultural topsoils (0–20 cm depth) from a contaminated area in the Yangtze River Delta region of east China. There was a decreasing trend in PAH concentration in particle‐size separates with decreasing particle size. However, the different particle‐size separates had similar PAH composition. The concentration of PAHs in the light fraction ranged from 13 037 to 107 299 μg kg?1, far higher than in the heavy fraction, which ranged from 222 to 298 μg kg?1. Although the light fraction accounted for only 0.4–2.3% of the soils, it was associated with 31.5–69.5% of soil PAHs. The organic matter in coarse silt had the strongest capacity for enrichment with PAHs. Combining the distributions of PAHs and the turnover rates of organic matter in different soil fractions, the environmental risks of PAH‐polluted soils may be due mainly to the PAHs associated with sand and the light fraction.  相似文献   

8.
《Pedobiologia》2014,57(3):191-194
Soil aggregates and particulate organic matter (POM) are thought to represent distinct soil microhabitats for microbial communities. This study investigated whether organo-mineral (0–20, 20–50 and 50–200 μm) and POM (two sizes: >200 and <200 μm) soil fractions represent distinct microbial habitats. Microbial habitats were characterised by the amount and quality of organic matter, the genetic structure of the bacterial community, and their location outside or inside macroaggregates (>200 μm). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial communities structure of organo-mineral soil fractions were significantly different in comparison to the unfractionated soil. Conversely, there were little differences in C concentrations, C:N ratios and no differences in DGGE profiles between organo-mineral fractions. Bacterial communities between soil fractions located inside or outside macroaggregates were not significantly different. However, the bacterial communities on POM fractions were significantly different in comparison to organo-mineral soil fractions and unfractionated soil, and also between the 2 sizes of POM. Thus in the studied soil, only POM fractions represented distinct microhabitats for bacterial community, which likely vary with the state of decomposition of the POM.  相似文献   

9.
In acidified forest soils, the coarse‐soil fraction is a potential nutrient source. Plant nutrient uptake from the coarse‐soil fraction is aided by ectomycorrhiza. Similarly, (recalcitrant) organic matter (OM) is an important nutrient source largely made plant‐available through (symbiotic) microorganisms, especially in the topsoil. We hypothesized that in a podzol profile, fungal hyphae would concentrate in nutrient hotspots, either OM or the coarse‐soil fraction. Absolute hyphal length, base saturation, and organic‐C content of a Podzol profile were determined in the fine‐earth and coarse‐soil fractions. In the fine‐earth fraction, hyphae were attracted by the organic‐C content and relative high base saturation. In the coarse‐soil fraction of the BhBs horizon, the absolute hyphal length exceeded the hyphal length in the fine earth by factor 3, yet C content and base saturation were lowest. We could not determine to what fungi the hyphae belonged. Most likely ectomycorrhiza, ericoid mycorrhiza and saprotrophic fungi dominate the upper soil layers of this profile and all utilize OM for nutrition. In the deeper mineral horizons and especially in the coarse‐soil fraction, ectomycorrhiza are better adapted than other fungi to harvest nutrients from inorganic sources. Additionally, favorable physical properties may explain the high amount of fungal hyphae in the coarse‐soil fraction of the BhBs horizon. Both the coarse‐soil fraction and deeper mineral soil horizons may play a more active role in microbial nutrient cycling than previously assumed.  相似文献   

10.
黑土颗粒有机碳和氮含量对有机肥剂量响应的定量关系   总被引:2,自引:1,他引:2  
黑土是一种非常重要的耕种土壤,但是由于过度地开发利用和水土流失导致土壤有机质含量迅速下降,严重影响了耕地生产力和作物产量。为了能够快速恢复黑土肥力,利用海伦国家野外科学观测研究站内的长期定位试验,定量分析了黑土颗粒有机碳和氮含量对有机肥剂量的响应。田间试验开始于2001年,设置了4个施肥处理,分别为:1单施化肥(OM0);2低剂量有机肥与化肥配施(OM1);3中剂量有机肥与化肥配施(OM2);4高剂量有机肥与化肥配施(OM3)。在2011年播种前,采集各处理0~20 cm耕层土壤样品。应用有机碳物理分组方法,测定分析了土壤有机碳、氮及各组分的含量。研究结果表明长期不同剂量有机肥输入能够显著增加黑土总有机碳和全氮含量(P0.05),每增施1 t有机肥,土壤有机碳含量增加0.186 kg,土壤全氮含量增加0.02 kg,表明增加有机肥投入量是提高黑土有机碳含量的有效措施。有机肥的施用增加了土壤中粗颗粒和细颗粒组分,不同剂量有机肥处理表现为OM3OM2OM1OM0,而减小了土壤中矿质结合态组分的含量;随着有机肥施入量的增加,粗颗粒和细颗粒土壤有机碳和氮的含量呈增加的趋势,而矿质结合态中的有机碳含量则略有下降,表明粗颗粒和细颗粒有机碳和氮是黑土有机碳和氮的主要储存库,有机无机配施对土壤有机碳、氮的提升作用主要集中于对活性组分颗粒有机质的形成和积累。与OM0处理相比,有机肥的施入显著降低了颗粒有机质和矿质结合态有机质的C/N,并且随着有机肥施入量的增加而逐渐降低。与单施化肥相比,化肥有机肥配施能够显著增加土壤的总有机碳,全氮,颗粒有机碳、氮含量,其中以化肥配施高剂量有机肥效果最佳,有利于黑土土壤肥力的快速提升,改善黑土的土壤质量。  相似文献   

11.
Soil organic matter (SOM) in allophanic soils is supposed to accumulate due to protection caused by binding to allophane, aluminium and iron. We investigated a catena of allophanic and non‐allophanic soils in Costa Rica to determine the effect of such binding mechanisms on SOM chemistry. These soils contain no contribution of black carbon. Molecular characterization of litter, extractable and dispersed organic matter was done by Curie‐point pyrolysis‐GC/MS. The molecular chemistry of the organic fractions indicates a strong decomposition of plant‐derived organic matter and a strong contribution of microbial sugars and N‐compounds to SOM. Both the decomposition of plant‐derived SOM – including that of relatively recalcitrant compounds – and the relative contribution of microbial SOM were greater in allophanic samples than in non‐allophanic ones. This suggests that chemical protection does not act on primary OM, although it may influence the accumulation of secondary OM in these soils. The effect of allophane on SOM contents in such perhumid soils is probably through incorporation of decomposition products and microbial SOM in very fine aggregates that – in a perhumid environment – remain saturated with water during much of the year. Greater concentrations of aliphatics are found in allophanic residues, but there is no evidence of any specific mineral‐organic binding. The results do not support the existing theory of chemical protection of plant‐derived components through binding to allophane, iron and aluminium.  相似文献   

12.
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand( 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm~(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture arable cropping). We concluded that POM is neither homogeneous nor unique.  相似文献   

13.
Andosols are characterised by high organic matter (OM) content throughout the soil profile, which is mainly due to the stabilisation of soil organic matter (SOM) by mineral interactions. The aim of the study was to examine whether there were differences in the chemical composition of mineral-associated SOM and free OM in the top A horizon and in the subsoil (horizons below the A11 horizon). Our experimental approach included the replicated sampling of a fulvic and an umbic Andosol under pine and laurel forest located on the island of Tenerife with a Mediterranean sub-humid climate. We determined the extent of the organo-mineral interactions by comparing the sizes of the light (free) and heavy (dense) soil fractions obtained by physical separation through flotation in a liquid with a density of 1.9 g cm–3. We determined the elemental and isotopic composition of both fractions and analysed their chemical composition by analytical pyrolysis. The elemental and isotopic composition showed similar values with depth despite the different vegetation and climatic conditions prevailing at the two sites. Carbon (C) stabilised by mineral interactions increased with depth and represented 80–90% of the total C in the lowest horizons. The heavy fractions mainly released N-containing compounds upon analytical pyrolysis, whereas lignin-derived and alkyl compounds were the principal pyrolysis products released from the light fractions of the top- and subsoil horizons. Principal component analysis showed that the chemical composition of OM stabilised by mineral interaction differs in the different horizons of the soil profile. In the A horizons, the chemical composition of this OM was similar to those of the light fractions, i.e. litter input. There was a gradual change in the bulk molecular composition from a higher contribution of plant-derived molecules in the light and heavy fractions of the A horizon to more microbial-derived molecules as well as black C-derived molecules at depth. We conclude that transport processes in addition to decomposition and possibly in situ ageing affect the chemical composition of mineral-associated OM in subsoils.  相似文献   

14.
The influence of fertilization on organic‐carbon fractions separated by density and particle size in Heilu soil (Calcic Kastanozems, FAO) was investigated in a 20‐year (1979–1999) long‐term experiment on the Loess Plateau of China. Compared to an unfertilized treatment, N application alone did not increase total organic carbon (TOC) and its fractions of density and particle size. However, the treatment of N + P fertilization significantly increased salty‐solution–soluble organic carbon (SSOC), microbial biomass C (MB‐C), and organic C associated with fine silt. When manure was applied alone and in combination with N and P fertilizer, the light fraction of organic C (LFOC), SSOC, and MB‐C were increased significantly, and the TOC was as high as that of a native Heilu soil. Organic C associated with different particle‐size fractions was also increased significantly, and the allocation of C among the fractions was altered: the proportions of C in sand (>50 μm), coarse‐silt (20–50 μm), and fine‐clay (<0.2 μm) fractions were increased whereas fine‐silt (2–20 μm) and coarse‐clay (0.2–2 μm) fractions were decreased. It is concluded that N fertilizer alone is not capable of restoring organic‐matter content in the Heilu soils of the Loess Plateau and that C‐containing material like manure and straw is necessary to produce significant increase in soil organic carbon in these soils.  相似文献   

15.
Many tropical soils include sesquioxides, which influence the stability of soil organic matter (OM) and aggregation to an extent that is not fully characterized. The present study was carried out on a range of 18 topsoil samples (0–10 cm) from low-activity clay (LAC) soils from sub-Saharan Africa and Brazil, and aimed: (i) at characterizing the size distributions of water-stable aggregates and organic constituents, (ii) at studying how these distributions were affected by texture and sesquioxides, and (iii) how they interacted.The distributions of stable aggregates were generally dominated by macroaggregates (> 200 μm), and those of organic constituents by fine OM (< 20 μm). Aggregation was not clearly affected by soil texture, while total soil carbon (Ct) and the amount of carbon (C) as fine OM increased with soil content in clay plus fine silts (< 20 μm). Stable macroaggregation correlated with Ct and with C amount as fine OM, but each of them correlated more closely with citrate-bicarbonate-dithionite-extractable aluminium (Al), which was not expected. Stable macroaggregation also correlated with C amounts as coarse- and medium-sized OM (> 200 and 20–200 μm, respectively), but each of them correlated more closely with oxalate-extracted Al. These results suggested that for the LAC tropical soils under study OM and aggregate stability depended closely on Al-containing sesquioxides, on Al-substituted crystalline hematite and goethite especially. These sesquioxides also seemed to play a dominant role in the relations between aggregation and OM. As far as soils rich in sesquioxides are concerned, this confirmed that OM is not the main aggregating agent, and suggested that physical protection within aggregates is not necessarily the main mechanism for OM stabilization. However, as soil sesquioxide content cannot be managed easily, the effect of land use on soil OM and aggregation was determinant at the local scale: indeed, for a given location, stable macroaggregation, Ct and C amount as fine OM generally decreased with land use intensification (i.e. cultivation, tillage, reduced surface cover).  相似文献   

16.
The topsoils of two sites, comprising natural forest and 4- and 20-year-old pastures, respectively, were selected in Rondônia to evaluate the changes of soil organic matter due to pasture establishment. These changes were evaluated by measuring the proportions of the C and N associated with clay and silt fractions, and by the C decomposition (CD) rate of the whole topsoils and their size fractions. The topsoils studied had large proportions of C and N associated with fine fractions, especially with clay fractions. The CD rate of the silt fractions was higher than that of the clay fractions under the two forest topsoils and under the 20-year-old pasture. The CD rate of the silt fractions under forest vegetation at each site was significantly higher than that of the silt fractions under pasture vegetation at the same site. The CD of clay fractions followed the same trend as the silt fractions, showing an improvement in the stability of C associated with clay and silt fractions under pasture vegetation.  相似文献   

17.
The various ecosystem functions of soil organic matter (SOM) depend on both its quantity and stability. Numerous fractionation techniques have been developed to characterize SOM stability, and thermal analysis techniques have shown promising results to describe the complete continuum of SOM in whole soil samples. However, the potential link between SOM thermal stability and biological or chemical stability has not yet been adequately explored. The objective of this study was to compare conventional chemical and biological methods used to characterize SOM stability with results obtained by thermal analysis techniques. Surface soil samples were collected from four North American grassland sites along a continental mean annual temperature gradient, each with a native and cultivated land use. Soil organic C concentrations ranged from 6.8 to 33 g C kg−1 soil. Soils were incubated for 588 days at 35 °C, and C mineralization rates were determined periodically throughout the incubation by measuring CO2 concentration using an infrared gas analyzer (IRGA) to calculate biological indices of SOM stability. Hot-water extractable organic C (HWEOC) contents were determined before and after incubation as chemical indices. Finally, samples from before and after incubation were analyzed by simultaneous thermal analysis (i.e., thermogravimetry (TG) and differential scanning calorimetry (DSC)) to determine thermal indices of SOM stability. Long-term incubation resulted in the mineralization of up to 33% of initial soil C. The number of days required to respire 5% of initial soil organic carbon (SOC), ranged from 27 to 115 days, and is proposed as a standardized biological index of SOM stability. The number of days was greater for cultivated soils compared to soils under native vegetation, and generally decreased with increasing site mean annual temperature. HWEOC (as % of initial SOC) did not show consistent responses to land use, but was significantly lower after long-term incubation. Energy density (J mg−1 OM) was greater for soils under native vegetation compared to cultivated soils, and long-term incubation also decreased energy density. The temperatures at which half of the mass loss or energy release occurred typically showed larger responses to land use change than to incubation. Strong correlations demonstrated a link between the thermal and biogeochemical stability of SOM, but the interpretation of the thermal behavior of SOM in bulk soil samples remains equivocal because of the role the mineral component and organo-mineral interactions.  相似文献   

18.
Organo-mineral associations stabilize soil organic matter, though the mechanisms by which they do so are unclear. We used particle-size fractions < 6.3 μm of two soils to examine the importance of Fe oxides, short-range order Al silicates and the surface areas of minerals and micropores on the formation of organo-mineral associations. In the subsoil Fe oxides were most strongly statistically correlated with the mineral-bound organic carbon. We therefore assume that they are the most important substrates for the formation of organo-mineral associations. There is no indication that this is caused by physical protection of organic matter in their micropores (< 2 nm). In the Haplic Podzol, dithionite–citrate–bicarbonate-soluble short-range order Al silicates may also play a role. Fe oxide particles were calculated to offer specific surface areas of ∼ 200 m2 g−1 (goethite) and ∼ 800 m2 g−1 (ferrihydrite), corresponding to crystal diameters of only a few nm. We assume that the resulting large amount of oxide-specific reactive surface sites (conditionally charged hydroxyl groups) is responsible for their dominant role as sorbents. With maximum C loadings of 1.3 mg C per m2 Fe oxide for the Dystric Cambisol and 1.1 mg C per m2 Fe oxide + short-range order Al silicates for the Haplic Podzol the subsoils of both soils seem to have reached saturation with respect to organic matter sorption. In contrast to subsoil horizons, organo-mineral associations from topsoils contain much larger amounts of organic matter. Here a larger C loading on Fe oxides or a greater importance of other sorbents in addition to the oxides must be assumed.  相似文献   

19.
Particulate organic matter fractions (POM), defined as sand‐sized organic separates in soils, are known to be labile organic components with a rapid turnover. Recently, POM fractions were identified to be metal‐enriched in both metal‐contaminated and uncontaminated soils. However, mechanisms for such metal‐enrichment are poorly understood, because of the paucity of information on the chemical properties of POM. The aim of this study was to quantify the reactivity of POM towards Cu and to show a POM‐size effect on this reactivity. POM was isolated from soils with different organic amendment managements: straw (S), conifer compost (CC), and non‐amended (NA). Two POM size fractions were isolated by density‐fractionation in water: 50–200 μm and 200–2000 μm. These fractions were studied for their metal contents, acid‐base properties and affinity toward Cu. The buffer capacity and Cu affinity were modeled by FITEQL 4.0 software and compared between the two POM size fractions. Each POM size fraction provided a buffer capacity due to the presence of reactive sites, the greatest being for the 50–200 μm POM fractions. A signature of organic inputs as seen by the buffer capacities was observed for the 50–200 μm but not for the 200–2000 μm POM fractions. But Cu affinity was comparable between the coarse and fine POM fractions and no significant differences were found between NA, S and CC samples. We checked the hypothesis that decreasing POM size due to degradation processes generates more reactive surface sites. Results confirmed that soil POM plays a key role as a metal sink, due to its chemical properties.  相似文献   

20.
Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long‐term farming systems were compared: a permanent pasture, a conventional‐arable system and an organic‐arable system. Whole soil samples were separated into microaggregates (53–250 µm), 20–53 µm and < 20 µm organo‐mineral fractions, sand and particulate organic matter, after complete disruption of macroaggregates. Equal amounts of microaggregates were isolated, irrespective of management. However, microaggregates from the pasture contained a larger fraction of total soil organic C and were more stable than microaggregates from the two arable fields, suggesting greater SOM stabilization in microaggregates under pasture. Moreover, differences in the relative contribution of coarse silt (> 20 µm) versus fine mineral particles in the microaggregates of the different management systems demonstrate that different types of microaggregates were isolated. These results, in combination with micromorphological study of thin sections, indicate that the great earthworm activity under permanent pasture is an important factor explaining the presence of very stable microaggregates that are relatively enriched in organic C and fine mineral particles. Despite a distinctly greater total SOM content and earthworm activity in the organic‐ versus the conventional‐arable system, differences in microaggregate characteristics between both arable systems were small. The formation of stable and strongly organic C‐enriched microaggregates seems much less effective under arable conditions than under pasture. This might be related to differences in earthworm species' composition, SOM characteristics and/or mechanical disturbance between pasture and arable land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号