首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Client-owned, clinically normal Doberman Pinschers (n=20), English Foxhounds (n=17), and Doberman Pinschers with clinical signs of disk-associated cervical spondylomyelopathy (DA-CSM) (n=17) were prospectively studied. All dogs underwent magnetic resonance imaging (MRI) of the cervical vertebral column. To evaluate vertebral canal stenosis, the canal occupying ratios of the spinal cord and cerebrospinal fluid (CSF)-column were calculated from C5 to C7. To evaluate the degree of spinal cord compression and the amount of canal compromise, the compression ratio, remaining spinal cord and CSF-column area, and vertebral canal and dorsoventral vertebral canal compromise ratios were calculated at the site of most severe compression. For each canal occupying ratio, there was a significant higher value (implicating less space available for the spinal cord in the vertebral canal) at the level of C7 for clinically affected Doberman Pinschers compared with clinically normal English Foxhounds. The remaining spinal cord area was significantly smaller in dogs with clinically relevant spinal cord compression compared to dogs with clinically irrelevant spinal cord compression. Relative stenosis of the caudal cervical vertebral canal occurred more often in Doberman Pinschers with DA-CSM compared to English Foxhounds and a critical degree of spinal cord compression should be reached to result in clinical signs.  相似文献   

2.
OBJECTIVE: To establish the reference ranges for motor evoked potential (MEP) latency and amplitude in clinically normal Doberman Pinschers, compare the MEPs of Doberman Pinschers with and without clinical signs of cervical spondylomyelopathy (CSM; wobbler syndrome), and determine whether MEP data correlate with neurologic or magnetic resonance imaging (MRI) findings. ANIMALS: 16 clinically normal and 16 CSM-affected Doberman Pinschers. PROCEDURES: Dogs were classified according to their neurologic deficits. After sedation with acepromazine and hydromorphone, transcranial magnetic MEPs were assessed in each dog; latencies and amplitudes were recorded from the extensor carpi radialis and cranial tibial muscles. Magnetic resonance imaging was performed to evaluate the presence and severity of spinal cord compression. RESULTS: Significant differences in cranial tibial muscle MEP latencies and amplitudes were detected between clinically normal and CSM-affected dogs. No differences in the extensor carpi radialis MEP were detected between groups. There was a significant correlation (r = 0.776) between the cranial tibial muscle MEP latencies and neurologic findings. Significant correlations were also found between MRI findings and the cranial tibial muscle MEP latencies (r = 0.757) and amplitudes (r = -0.453). CONCLUSIONS AND CLINICAL RELEVANCE: Results provided a reference range for MEPs in clinically normal Doberman Pinschers and indicated that cranial tibial muscle MEP latencies correlated well with both MRI and neurologic findings. Because of the high correlation between cranial tibial muscle MEP data and neurologic and MRI findings, MEP assessment could be considered as a screening tool in the management of dogs with spinal cord disease.  相似文献   

3.
Objective— To evaluate the safety of the angle of insertion of bicortical implants in Doberman Pinschers affected by caudal cervical spondylomyelopathy (CCSM) using simulation on computed tomography (CT) images.
Animals— Doberman Pinschers (n=9) with dynamic spinal compression attributed to CCSM.
Methods— Dogs had CT evaluation of the cervical vertebral column. Digital images were used to evaluate the safety of bicortical implant insertion from the midline at 30, 35, and 40° inclination by drawing a line simulating implant position. Correct surgical positioning of dogs was evaluated by measuring the degree of rotation of the spine along the longitudinal axis.
Results— Insertion of an implant at 30, 35, and 40° inclination was considered safe in 42%, 59%, and 67% of selected sites. Rotation of the spine from 9° counter clockwise to 10° clockwise along the longitudinal axis occurred in 53% of the areas considered.
Conclusions— These results suggest that bicortical implants in the caudal cervical area in Doberman Pinschers affected by CCSM carry a high risk of vertebral canal and intervertebral foramina violation.
Clinical Relevance— Bicortical implants inserted at 30 and 35° in the caudal cervical area in Doberman Pinschers affected by CCSM carry a high risk of vertebral canal and intervertebral foramina violation. CT planning for individual dogs can facilitate selection of the appropriate insertion plane and vertebral column rotation needs to be considered in surgical planning.  相似文献   

4.
Seventeen large dogs (15 Doberman pinschers, one Labrador retriever, and one German short-haired pointer) with pain and gait abnormalities resulting from caudal cervical intervertebral disc degeneration were treated by disc fenestration. Four dogs recovered completely, two dogs appeared to have recovered but nerve root compression and pain returned 3 years later, five did not recover completely or did not improve, and six became progressively worse. In the dogs that recovered, preoperative myelograms showed that traction on or flexing the neck relieved the spinal cord compression. Such manipulation did not relieve slight persistent compression in the dogs that did not improve nor did it relieve severe compression by disc herniation or spinal canal stenosis in the dogs that became progressively worse. The return of nerve root compression after 3 years in two dogs was attributed to incomplete removal of dorsal anulus fibrosus. It was concluded that disc fenestration alone provided inadequate treatment of caudal cervical degenerative disc disease in large dogs.  相似文献   

5.
The cervical spines of 6 horses with cervical stenotic myelopathy (CSM) were examined using myelography and contrast-enhanced computed tomography (CECT). Histopathology of the spinal cord of these horses identified 10 neurologically significant compressive lesions. Myelography and CECT were both able to demonstrate all 10 spinal cord compressive lesions, but myelography falsely identified 2 sites and CECT falsely identified 1 site as compressive lesions of the spinal cord which were not supported by histopathology. Additional qualitative information was obtained by CECT regarding the source, severity and location of spinal cord compression. Computed tomography identified stenosis of the vertebral canal with circumferential loss of contrast agent and documented lateral compressive lesions of the spinal cord due to malformed articular facets. Compression of the peripheral nerve roots by malformed articular facets encroaching on the intervertebral foramen was easily identified by CECT in the axial plane. No compressive lesions were identified in 3 unaffected horses by either method. Minimum sagittal diameter (MSD) values obtained from CECT images were strongly correlated with necropsy measurements, validating CECT as an accurate method of obtaining MSD values. The MSD values in the CSM-affected horses were significantly narrowed (P less than 0.05) from C3C6 regardless of the site of spinal cord compression, when compared with the unaffected controls. This finding supports previous reports suggesting that generalised stenosis of the vertebral canal is an important feature in the pathogenesis of cervical stenotic myelopathy.  相似文献   

6.
Treatment recommendations differ for dogs with intervertebral disk extrusion vs. intervertebral disk protrusion. The aim of this retrospective, cross‐sectional study was to determine whether clinical and magnetic resonance imaging (MRI) variables could be used to predict a diagnosis of thoracolumbar intervertebral disk extrusion or protrusion in dogs. Dogs were included if they were large breed dogs, had an MRI study of the thoracolumbar or lumbar vertebral column, had undergone spinal surgery, and had the type of intervertebral disk herniation (intervertebral disk extrusion or protrusion) clearly stated in surgical reports. A veterinary neurologist unaware of surgical findings reviewed MRI studies and recorded number, location, degree of degeneration and morphology of intervertebral disks, presence of nuclear clefts, disk space narrowing, extent, localization and lateralization of herniated disk material, degree of spinal cord compression, intraparenchymal intensity changes, spondylosis deformans, spinal cord swelling, spinal cord atrophy, vertebral endplate changes, and presence of extradural hemorrhage. Ninety‐five dogs were included in the sample. Multivariable statistical models indicated that longer duration of clinical signs (P = 0.01), midline instead of lateralized disk herniation (P = 0.007), and partial instead of complete disk degeneration (P = 0.01) were associated with a diagnosis of intervertebral disk protrusion. The presence of a single intervertebral herniation (P = 0.023) and dispersed intervertebral disk material not confined to the disk space (P = 0.06) made a diagnosis of intervertebral disk extrusion more likely. Findings from this study identified one clinical and four MRI variables that could potentially facilitate differentiating intervertebral disk extrusions from protrusions in dogs.  相似文献   

7.
Observations on a series of 38 cases (35 Doberman Pinschers and three Great Danes) of the canine wobbler syndrome are described. Radiographic examinations suggested that the primary lesion is an intervertebral instability at C6/7, but with time, secondary changes of the disc degeneration and prolapse and vertebral body malformation causing stenosis of the vertebral canal occur. Cases detected at a young age and showing only the primary lesion were treated successfully, by disc fenestration alone or by disc fenestration and intervertebral screwing. The success rate in older cases with secondary lesions was poor and in this type of case, cord decompression by dorsal laminectomy appears necessary.  相似文献   

8.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

9.
Osseous‐associated cervical spondylomyelopathy in dogs is characterized by both static and dynamic spinal cord compression; however, standard MRI methods only assess static compression. In humans with cervical spondylotic myelopathy, kinematic MRI is commonly used to diagnose dynamic spinal cord compressions. The purpose of this prospective, analytical study was to evaluate kinematic MRI as a method for characterizing the dynamic component of osseous‐associated cervical spondylomyelopathy in dogs. We hypothesized that kinematic MRI would allow visualization of spinal cord compressions that were not identified with standard imaging. Twelve client‐owned dogs with osseous‐associated cervical spondylomyelopathy were enrolled. After standard MRI confirmed a diagnosis of osseous‐associated cervical spondylomyelopathy, a positioning device was used to perform additional MRI sequences with the cervical vertebral column flexed and extended. Morphologic and morphometric (spinal cord height, intervertebral disc width, spinal cord width, vertebral canal height, and spinal cord area) assessments were recorded for images acquired with neutral, flexion, and extension imaging. A total of 25 compressions were seen with neutral positioning, while extension identified 32 compressions. There was a significant association between extension positioning and presence of a compressive lesion at C4‐C5 (p = 0.02). Extension was also associated with a change in the most severe site of compression in four out of 12 (33%) dogs. None of the patients deteriorated neurologically after kinematic imaging. We concluded that kinematic MRI is a feasible method for evaluating dogs with osseous‐associated cervical spondylomyelopathy, and can reveal new compressions not seen with neutral positioning.  相似文献   

10.
OBJECTIVE: To evaluate progression of clinical signs and magnetic resonance imaging (MRI) findings in dogs with cervical spondylomyelopathy (wobbler syndrome) treated medically or surgically. DESIGN: Prospective cohort study. ANIMALS: 12 Doberman Pinschers. PROCEDURES: Neurologic examinations and MRI were performed before medical (n = 9) or surgical treatment (ventral slot, 3) and a minimum of 12 months later. RESULTS: Mean follow-up time was 14.5 months. Clinically, 2 dogs improved after surgical treatment and 5 improved after medical treatment. Magnetic resonance imaging of surgically treated dogs revealed adequate spinal cord decompression. Spinal cord signal changes were seen in 2 dogs before surgery, both of which had new signal changes at the same and adjacent sites during follow-up examination. One dog treated surgically developed 3 new areas of spinal cord compression. In the medically treated dogs, the severity of spinal cord compression at the time of follow-up examination was unchanged in 4 dogs, worse in 2 dogs, and improved in 3 dogs, but spinal cord atrophy was observed on transverse images. Four medically treated dogs had changes in spinal cord signal initially, but none developed new signal changes or compressions. CONCLUSIONS AND CLINICAL RELEVANCE: Medical and surgical treatment improved or stabilized the clinical condition of most dogs. Surgical treatment appeared to hasten the development of additional areas of spinal cord compression and lesions in dogs with preoperative cord changes; however, the clinical importance of these changes was not determined. The progression of pathologic MRI abnormalities was notably less in medically treated dogs, compared with surgically treated dogs.  相似文献   

11.
Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently.  相似文献   

12.
O bjectives : To describe the clinical and magnetic resonance imaging features of cervical vertebral malformation-malarticulation in Bernese mountain dogs.
M ethods : Seven Bernese mountain dogs (four males and three females) were diagnosed with cervical vertebral malformation-malarticulation by magnetic resonance imaging. The following data were evaluated retrospectively: (1) abnormalities of the cervical vertebral column and spinal cord, (2) spinal cord compression, (3) intervertebral disc degeneration and herniation, (4) severity of clinical signs pretreatment and after treatment, (5) type of treatment and (6) outcome.
R esults : Spin echo T1-weighted and T2-weighted images disclosed multi-level, extradural compressive spinal cord lesions (ventral, dorsolateral or both) spanning from intervertebral disc spaces C3-4 to C6-7. In all seven dogs, T2-weighted images disclosed one or more intramedullary hyperintensities associated with extradural spinal cord compression. Surgery was performed in five dogs. Two dogs were managed medically. The prognosis for surgical or conservative management in Bernese mountain dogs was similar to cervical vertebral malformation-malarticulation in other breeds.
C linical S ignificance : Cervical vertebral malformation-malarticulation is an important differential diagnosis for young to middle-aged Bernese mountain dogs with a C1-5 or C6-T2 neuroanatomic localisation. Dorsolateral spinal cord compression associated with articular process hypertrophy was the most common feature of cervical vertebral malformation-malarticulation in the seven Bernese mountain dogs evaluated.  相似文献   

13.
The caudal lumbar and lumbosacral spine of 13 dogs with pain or neurologic deficits were evaluated using magnetic resonance imaging (MRI). Spin echo T1, proton density, and T2 weighted and gradient echo T2* imaging sequences were utilized. MRI permitted direct, multiplanar, tomographic visualization of the spine facilitating evaluation of all components of degenerative caudal lumbar and lumbosacral stenosis. Abnormalities detected included intervertebral disc degeneration, intervertebral disc protrusion involving both the vertebral canal and intervertebral foramina, articular process osteophytosis, articular process fracture, nerve root impingement by spondylosis deformans, and the presence of low signal material within the vertebral canal of 2 dogs with recurrent pain following previous spinal surgery. In all 7 dogs treated surgically, MRI findings were consistent with surgical findings.  相似文献   

14.
It has been suggested that a combination of large head and long neck cause abnormal forces on the cervical vertebral column and are involved in the pathogenesis of cervical spondylomyelopathy (CSM) in Great Danes. The aim of this study was to compare the body conformation of 15 clinically normal and 15 CSM-affected Great Danes. There were no statistically significant differences between clinically normal and CSM-affected Great Danes in any body measurements. There were no significant associations between body conformation and the severity of neurological signs or cervical vertebral body dimensions determined by magnetic resonance imaging in CSM-affected Great Danes. The results of this study do not support the hypothesis that differences in body conformation related to head size, neck length, and body height and length, play a role in the pathogenesis of CSM in Great Danes.  相似文献   

15.
OBJECTIVE: To describe an intraoperative ultrasound imaging technique during dorsal laminectomy in 2 dogs with caudal cervical vertebral instability and malformation (CCVIM, "Wobbler syndrome"). STUDY DESIGN: Clinical case report. SAMPLE POPULATION: Two dogs with CCVIM. RESULTS: On neurologic examination there was tetraparesis with upper motor neuron signs in the thoracic limbs and lower motor neuron signs in the pelvic limbs in dog 1, and hyperreflexia of the rear limbs, normoreflexia of the right front limb, and hyporeflexia of the left front limb of dog 2. Both dogs had signs of marked cervical pain and radiographic signs of cervical spinal cord compression. Intraoperative ultrasonography of the spinal cord revealed protruding intervertebral disc at C5-6 (dog 1) and C6-7 (dog 2), and the parallel borders of the spinal cord and central canal after decompression. Continuous dorsal laminectomy (CDL) resulted in improvement over 16 months (dog 1) and 20 months (dog 2). CONCLUSIONS: Intraoperative ultrasonographic imaging of the cervical spinal cord after CDL was helpful in determining adequate decompression (postlaminectomy) of the spinal cord in relation to the ventral and lateral compressive component(s) and to image the protruding intervertebral disc. CLINICAL RELEVANCE: Intraoperative ultrasonography can be used to provide valuable information on the spinal cord and surrounding soft tissues for the neurosurgeon.  相似文献   

16.
Cervical vertebral fusion was noted radiographically in four dogs presented for signs of cervical spinal cord compression. Ventral extradural spinal cord compression was seen on myelography at intervertebral disc spaces adjacent to the fused vertebrae in two dogs and at a site removed in two dogs. At surgery, no intervertebral disc space was found in the area of fusion. No other instances of cervical vertebral fusion were identified in reviewing radiographs of 1225 other dogs with cervical intervertebral disc extrusion evaluated at our hospital. Clinical signs resolved in all dogs after surgical removal of extruded intervertebral disc material. Information from these four dogs suggest vertebral fusion may predispose adjacent discs to herniation.  相似文献   

17.
The height, width, and cross-sectional area of the vertebral canal and spinal cord along with the area ratio of spinal cord to vertebral canal in the cervical vertebra were evaluated in images obtained using computed tomography (CT). Measurements were taken at the cranial, middle, and caudal point of each cervical vertebra in eight clinically normal small breed dogs (two shih tzu, two miniature schnauzers, and four mixed breed), 10 beagles, and four German shepherds. CT myelography facilitated the delineation of the epidural space, subarachnoid space, and spinal cord except at the caudal portion of the 7th cervical vertebra. The spinal cord had a tendency to have a clear ventral border in the middle portion of the vertebral canal and lateral borders near both end plates. The height, width, and area of the vertebral canal and spinal cord in the cervical vertebra were increased as the size of dog increased. However, the ratio of the spinal cord area to vertebral canal area in the small dogs was higher than that of the larger dogs. Results of the present study could provide basic and quantitative information for CT evaluation of pathologic lesions in the cervical vertebra and spinal cord.  相似文献   

18.
No screening method is currently available to differentiate dogs with and without cervical spondylomyelopathy. Intravertebral and intervertebral ratios are used in horses and can predict cervical vertebral malformation. Intervertebral ratios could be a useful screening method for canine cervical spondylomyelopathy. Our purpose was to compare cervical intervertebral and intravertebral ratios in normal vs. affected Doberman pinschers. Forty dogs were studied, 27 affected and 13 normal. Cervical radiographs were obtained in all dogs. The minimum intra- and intervertebral sagittal diameter ratios were established for each cervical vertebrae and disc space from C(2) to C(7) . Comparisons were made between groups and specific vertebral body and disc levels. The effect of gender, age, and method of measurement (analog or digital radiographs) was also studied. There was no difference in either the intervertebral or intravertebral ratio between normal vs. affected dogs. The ratios decreased progressively along the cervical spine, being smallest at C(6) -C(7) and C(7) , respectively. Age, gender, and method of measurement had a significant influence on both inter- and intravertebral ratios, with smaller ratios seen as dogs aged and in male dogs. Based on our results, inter- or intravertebral ratios have no value to distinguish between clinically normal Doberman pinschers and Doberman pinschers with cervical spondylomyelopathy.  相似文献   

19.
Cervical spinal cord abnormalities are often unapparent on myelographic studies, because no normal values for cervical spinal cord diameter are currently available. The purpose of this study was to establish, myelographically, the normal sagittal diameter of the cervical spinal cord in large and small breed dogs and its relationship to the sagittal diameter of the vertebral canal and sagittal height/length of the corresponding vertebral bodies. Forty-one adult dogs underwent cervical radiography and myelography. Spinal cord and vertebral canal sagittal diameter, vertebral body height at C2 to 5, body length at C3 to 5, and dorsal spine length of C2 were measured on lateral views. Ratios of spinal cord:vertebral canal diameter, spinal cord:body height, and spinal cord:body length/spine were calculated, and a normal range was determined for small and large breed dogs. The spinal cord:vertebral canal ratios showed that small breeds have a higher cervical cord-to-canal ratio than large breeds. The mean values and ranges of 14 ratios are reported. The ratios of spinal cord:body length at C2 to 4 in small breeds and spinal cord:body height at C3 to 5 in large breeds were found to be the most accurate for assessing spinal cord sagittal diameter. These normal ranges would allow quantitative and objective evaluation of the cervical spinal cord by myelography and early identification of dogs with altered spinal cord diameter, which could be further evaluated by means of alternative imaging techniques.  相似文献   

20.
OBJECTIVE: To determine magnetic resonance imaging (MRI) abnormalities in dogs with intervertebral disk disease (IVDD) and develop a classification scheme for IVDD in dogs based on MRI findings. DESIGN: Retrospective case series. ANIMALS: 69 dogs. PROCEDURE: Medical records of dogs admitted because of thoracolumbar IVDD in which MRI of T9 through L7 had been performed were reviewed. RESULTS: A total of 759 intervertebral disk spaces were examined. Of these, 342 (45.1%) were classified as having a normal MRI appearance; the remaining 417 (54.9%) had various types of IVDD. Disk degeneration was identified in 276 disk spaces in 56 dogs, bulging of the intervertebral disk was identified in 37 disk spaces in 24 dogs, disk protrusion was identified in 54 disk spaces in 32 dogs, and disk extrusion was identified in 50 disk spaces in 48 dogs. Cartilage endplate changes were identified in 35 vertebrae in 17 dogs, and increased signal intensity of the spinal cord was identified in 21 dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Four types of IVDD (disk degeneration, bulging of the intervertebral disk, disk protrusion, and disk extrusion) were identified on the basis of MRI findings in dogs with thoracolumbar IVDD. We recommend that a standardized nomenclature be adopted for the various types of thoracolumbar IVDD in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号