共查询到13条相似文献,搜索用时 15 毫秒
1.
Heat and drought stress on durum wheat: Responses of genotypes,yield, and quality parameters 总被引:1,自引:0,他引:1
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions. 相似文献
2.
Ajay Kumar Elias M. Elias Farhad Ghavami Xin Xu Shalu Jain Frank A. Manthey Mohamed Mergoum Mohammed S. Alamri Penny M.A. Kianian Shahryar F. Kianian 《Journal of Cereal Science》2013
Gluten strength is an important characteristic, determining the end product quality of durum wheat semolina. To identify the genetic basis of gluten strength in North Dakota durum cultivars, a doubled haploid population was developed from the cross of a weak gluten cultivar ‘Rugby’ and a strong gluten cultivar ‘Maier’. A framework linkage map consisting of 228 markers was constructed and used with phenotypic data on gluten strength (measured by sedimentation volume) to conduct single- and two-locus QTL analyses. Only one consistent QTL (QGs.ndsu-1B) contributing up to 90% of the phenotypic or 93% of the genotypic variation was detected on 1BS. No QTL × QTL or QTL × environment interactions were observed. The QGs.ndsu-1B was flanked by two DArT markers which were converted to STS markers and used along with SSR and EST-SSRs to develop a map of 1BS. QTL analysis delineated QGs.ndsu-1B in a 7.3 cM region flanked by an STS marker (STS-wPt2395) and a SSR marker (wmc85). The adapted background of this material and availability of PCR-based markers closely associated with this locus represent invaluable resources for marker-assisted introgression of gluten strength into other durum wheat varieties. A single QTL segregating in this population also makes it an ideal target for map-based cloning. 相似文献
3.
Stefania Masci Paola Ferrante Lina Maria Rivera OrtizFrancesco Sestili Domenico LafiandraRenato D’Ovidio 《Journal of Cereal Science》2012
The low molecular weight glutenin subunits (LMW-GS) are wheat storage proteins participating to the formation of glutenin polymers that, along with the other gluten proteins, allow the accumulation of a large quantity of protein in the endosperm tissue. The size and composition of the glutenin polymers are directly related to gluten visco-elastic properties. In particular, LMW-GS composition is the factor most influencing durum wheat quality. 相似文献
4.
The effects of particle size of granulars (semolina and flour combined), gluten strength, protein composition and fermentation time on the breadmaking performance were compared for eleven durum wheat genotypes of diverse strength from North America and Italy grown in the same environment. All genotypes were γ-gliadin 45 types (low-molecular weight glutenin subunit 2 patterns) associated with superior pasta-making quality. Three cultivars with high-molecular weight glutenin subunit 20 exhibited relatively weak gluten, confirming that this subunit is associated with weakness in durum wheat. Gluten strength as measured by a range of technological tests was directly and strongly related to the proportion of insoluble glutenin (IG) in granulars protein as determined by a spectrophotometric procedure. Reducing the particle size of granulars by gradual reduction shortened development time in both the farinograph and mixograph. Reducing granulars also increased starch damage and, accordingly, farinograph water absorption, but remix-to-peak baking absorption was unaffected due to increased fermentation loss for finer granulars. Neither loaf volume, nor remix-to-peak mixing time were affected by the particle size of the granulars indicating that regrinding is not an asset for baking provided there is adequate gassing power. Loaf volume was directly related to gluten strength and IG content, and inversely related to residue protein, a non-gluten containing fraction. When fermentation time was reduced from the standard 165 to 90 min and 15 min, all genotypes exhibited a progressive increase in loaf volume. Therefore, regardless of strength, short fermentation time is preferred when high volume durum wheat bread is desired. Some of the stronger durum genotypes exhibited remix-to-peak bread volume comparable to that expected of good quality bread wheat, indicating that there is potential to select for genotypes with improved baking quality in conventional breeding programs by screening for high content of insoluble glutenin. 相似文献
5.
Quantitative trait loci (QTLs) responsible for gluten strength measured by SDS-sedimentation volume (SV), mixograph and grain protein content (GPC) were located on the molecular linkage map of a durum wheat recombinant inbred line population. QSv.macs-1B.1 flanked by Xgwm550–Glu-B3 was the most consistent QTL for SV identified in all the environments. The same QTL was also associated with mixograph peak energy, peak time and total energy. The Glu-B1 locus was at the center of another QTL responsible for SV, while, Glu-B2 influenced SV as well as mixograph peak energy and peak time. Apart from glutenin coding loci, QTLs influencing mixing parameters and GPC were located in three other marker intervals Xwmc48.2–Xpsp3030 (4B), Xgwm573–Xbarc231.1 (7A) and Xgwm46–Xgwm540.1 (7B). A total of 26 main effect QTLs and 10 digenic epistatic interactions (QQ) for quality traits were distributed over 11 chromosomes. Out of these, seven main effect QTLs and three QQ interactions were involved in interactions with environments (QE, QQE). The results indicated that along with chromosome 1B, chromosomes 4B, 7A and 7B are also important for improvement of gluten strength and GPC in durum wheat. 相似文献
6.
Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread 总被引:1,自引:0,他引:1
Pingping Zhang Zhonghu He Dongsheng Chen Yong Zhang Oscar R. Larroque Xianchun Xia 《Journal of Cereal Science》2007
Thirty-three cultivars and advanced lines originated from China, Mexico, and Australia were sown in four environments in Chinese spring wheat regions to investigate the association between gluten protein fractions determined by reversed-phase high-performance liquid chromatography (RP-HPLC), and dough properties and northern-style Chinese steamed bread (CSB) quality. The genotypes were divided into two groups of 10 and 23 entries with and without the 1B/1R translocation, respectively. 1B/1R translocation lines had significantly high amounts of ω -gliadins, and low levels of glutenin and low molecular weight glutenin subunits (LMW-GS), but no significant difference in dough properties and CSB quality from non-translocation lines. The association between protein fractions and dough properties, and CSB quality largely depended upon the presence of 1B/1R translocation. Gliadin contributed more in quantity to flour protein content (FPC) than glutenin, while glutenin and its fractions contributed more to dough strength and CSB quality. Among non-translocation lines, moderate to high correlation coefficients between quantified glutenin and its fractions, and farinograph development time (DT, r=0.85–0.92) and stability (ST, r=0.81–0.93), extensograph maximum resistance (Rmax, r=0.90–0.93), CSB stress relaxation (SR, r=0.55–0.61) and CSB score (r=0.56–0.62), were observed. Gliadin:glutenin ratios showed significant and negative associations with dough properties and CSB quality. Correlation coefficients between gliadin:glutenin, gliadin:HMW-GS, gliadin:LMW-GS ratios, and CSB score were −0.79, −0.73, and −0.79 among non-translocation lines, respectively. HMW-GS and LMW-GS, x-type HMW-GS and y-type HMW-GS contributed similarly to dough properties and CSB quality for non-translocation lines. Weak correlations between protein fractions and dough properties, and CSB quality were observed among translocation lines. This information should be useful for improvement of dough properties and CSB quality. 相似文献
7.
Hongwei Yue Dong Jiang Tingbo Dai Xiaodong Qin Qi Jing Weixing Cao 《Journal of Cereal Science》2007,45(3):248-256
Two winter wheat (Triticum aestivum L.) cultivars differing in grain protein content were selected to study the effect of N application rate on changes in contents of glutenin macropolymer (GMP) and high molecular weight glutenin subunits (HMW-GS) during grain filling. Contents of GMP and HMW-GS were much higher in the high GPC cultivar, Xuzhou 26, than those in low GPC cultivar, Ningmai 9. N increased contents of GMP and HMW-GS in Xuzhou 26 with N rate between 0 and 300 kg ha−1, while at the very high N rate of 300 kg ha−1 the contents of GMP and HMW-GS in Ningmai 9 decreased. The high contents of GMP and HMW-GS at maturity were closely related to the rapid increase in contents of GMP and HMW-GS during the initial period of their synthesis. HMW-GS and GMP content were closely correlated. The total HMW-GS content was important in determining GMP content than the content of any HMW-GS pair or any individual HMW-GS present in the selected cultivars. The pattern of response of GMP content to N application rate was closely related to the regulatory effect of N on HMW-GS synthesis. 相似文献
8.
A micro Z-arm mixer and a 2g-Mixograph were used to compare the effect of pin and Z-arm-type mixing actions on mixing properties of wheat flour dough. Although the two mixing curves obtained with pin- and Z-arm-type mixing action showed a very similar mixing trace, no significant correlation was found between the two mixers other than the number of revolutions required for optimal dough consistency (peak resistance). Mixing requirement was described by a rate-independent parameter, the number of revolutions to peak dough development and was found to be greater in a Z-arm mixer than in a pin mixer. Mixing requirement showed significant correlation with stability, which is therefore a dough strength parameter. The change in the polymeric structure of gluten proteins of dough as indicated by %UPP (unextractable polymeric protein percentage) was monitored and showed a smaller decrease with Z-arm mixing than with pin mixing. Therefore, pin-mixing action is more energetic than Z-arm mixing. At peak resistance, Z-arm mixing gives a larger quantity of polymeric protein content in the dough relative to pin mixing. The degree of dough development at maximum resistance in the different mixers was shown to be different. A new parameter, delta-UPPMZ (the difference between %UPP of dough obtained with pin vs Z-arm mixing actions) was identified and proposed to have some relationship to the stability of the polymeric proteins in the dough. 相似文献
9.
Four sets of durum samples were used in this study to further understand the interrelationships among hard vitreous kernels (HVK), protein content, and pigment concentration, with a focus on the interaction and synergistic effects of protein content and vitreousness on durum quality. HVK level increases with higher protein content in the range of 9.5–12.5%, but this relationship is less evident in durum samples with high protein content (12.5–14.5%). Both protein content and kernel vitreousness can significantly affect durum milling quality. White starchy kernels (WSK) in low protein durum have a very detrimental impact on milling and pasta processing quality, but high protein content can mitigate the adverse impact of WSK on durum quality. Although protein content plays a dominant role, higher HVK might contribute positively to pasta firmness. There was no significant difference in yellow pigment content between HVK and WSK. However, pigment loss from semolina to dough was higher for WSK than HVK. Despite the difference in protein content, HVK and WSK have little difference in gluten strength. The monomeric protein was preferentially accumulated in HVK. The glutenin proteins of HVK and WSK were similar in the ratios of 1Bx/1By and HMW/LMW-GS. 相似文献
10.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment. 相似文献
11.
Both genetic and environmental factors influence the types and amounts of wheat proteins that link together to form polymers essential for flour quality. To understand how plant growth conditions might influence gluten polymer formation, protein fractions containing small and large polymers were separated from flour from the US wheat Butte 86 grown in the absence or presence of post-anthesis fertilizer. Proteins in the polymer fractions were analyzed by quantitative two-dimensional gel electrophoresis (2-DE). The ratio of high molecular weight glutenin subunits (HMW-GS) to low molecular weight glutenin subunits (LMW-GS) increased in both fractions in response to fertilizer, due in part to small increases in the proportions of individual HMW-GS. There were also changes within the LMW-GS. In particular, omega and alpha chain terminators increased in proportion in both polymer fractions, but changes were more pronounced in the large polymer fractions. Serpins also increased in both polymer fractions. Additionally, the study revealed differences in the proportions of traditional LMW-GS in small and large polymer fractions. LMW-s type proteins were more abundant in the large polymers while LMW-i type proteins were more prevalent in the small polymers, suggesting that these proteins may play different roles in the gluten polymer. 相似文献
12.
The role of gluten proteins during lamination and fermentation of multi-layered wheat flour pastry dough was examined by including oxidizing or reducing agents in the recipe to respectively strengthen or weaken the gluten protein network. Pastry burst rig textural measurements showed that dough strength increases during lamination up to 16 fat layers. However, further lamination up to 64 and 128 fat layers decreases the dough strength, most likely due to destruction of layer integrity. Redox agents strongly affect dough strength. Furthermore, fermentation and spread tests showed that they strongly influence elastic recoil immediately after lamination and during relaxation. Moreover, elastic recoil consistently occurs to a greater extent in the final direction of sheeting. None of the observed changes in dough strength and relaxation behaviour could be linked to changes in the levels of protein extractable in sodium dodecyl sulfate containing medium (SDS-EP). This suggests that changes occur preferentially either within the SDS-extractable or within the non-SDS-EP fraction and that they do not render non-extractable protein fractions extractable or vice versa. Furthermore, elastic recoil is most likely caused by reformation of inter- and intramolecular hydrogen bonds and hydrophobic interactions. 相似文献
13.
Albumin (Alb), globulin (Glo), glutelin (Gll) and glutenin (Gln) were separately extracted from wheat germ and wheat gluten. Amino acisd composition, molecular weight distribution, solubility, in vitro digestibility, and immunomodulatory activities were all analyzed. Gll and Gln have similar molecular weight distributions, which differed from those of Alb and Glo. Alb showed the highest solubility at various pH values (except pH 4.0), whereas Glo showed the highest in vitro digestibility. Glo and Gll have the highest proportion of essential to total amino acids, while Alb and Gll have the highest protein digestibility-corrected amino acid scores. Gll had the strongest immunomodulatory effects in terms of stimulation of RAW 264.7 cells to produce IL-6, TNF-α, and IL-10, and good stimulatory effects on splenocyte proliferation, production of IL-2, phagocytosis, and secretion of nitric oxide in RAW 264.7 cells. Gll can be considered a good protein source for use in health foods. 相似文献