共查询到18条相似文献,搜索用时 15 毫秒
1.
Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles 总被引:1,自引:0,他引:1
Dongyun Ma Yan Zhang Xianchun Xia Craig F. Morris Zhonghu He 《Journal of Cereal Science》2009,50(1):126-130
Understanding the effects of different alleles at the puroindoline b (Pinb) locus on processing quality will provide crucial information for quality improvement. Seven near-isogenic lines (NILs) planted at two locations in the 2008 cropping season were used to determine the effect of puroindoline b alleles on milling performance and Chinese raw white noodle (CRWN) quality. The Pina-D1b/Pinb-D1a genotype possessed significantly higher values in grain hardness, protein content and starch damage than other genotypes, whereas the Pina-D1a/Pinb-D1d genotype had the lowest grain hardness and starch damage, with higher break flour yield, and less reduction flour yield, higher flour colour L*, and lower flour colour b*, than other genotypes. Farinograph parameters, except for water absorption, were not significantly affected by variation of puroindoline b alleles. Pina-D1a/Pinb-D1e had the highest peak viscosity, whereas the lowest value was observed in a Pina-D1b/Pinb-D1a genotype. For CRWN quality, higher noodle viscoelasticity was obtained in the genotype Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g, whereas Pina-D1a/Pinb-D1d had a lower smoothness score. Genotypes with Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g produced the best total noodle score. It was concluded that genotype Pina-D1a/Pinb-D1d had better milling qualities, whereas Pina-D1a/Pinb-D1e and Pina-D1a/Pinb-D1g had slightly superior CRWN qualities in comparison with other genotypes. 相似文献
2.
Hui Jin Yan Zhang Genying Li Peiyuan Mu Zheru Fan Xianchun Xia Zhonghu He 《Journal of Cereal Science》2013
High-molecular-weight glutenin (HMW-GS) and low-molecular-weight glutenin (LMW-GS) subunits play an important role in determining wheat quality. To clarify the contribution of each subunit/allele to processing quality, 25 near-isogenic lines with different HMW-GS and LMW-GS compositions grown at two locations during the 2010 cropping season were used to investigate the effects of allelic variation on milling parameters, mixograph properties, raw white Chinese noodle (RWCN) and northern style Chinese steamed bread (NSCSB) qualities. The results showed that Glu-B1 and Glu-B3 made a large contribution to determining mixograph properties and processing quality, respectively. Subunit pairs 17 + 18 and 5 + 10, and alleles Glu-A3b, Glu-A3d, Glu-B3g and Glu-D3f made significant contributions to mixograph properties and no significant difference was detected on most parameters of RWCN and NSCSB for the allelic variation of HMW-GS and LMW-GS. The allelic interactions among glutenin loci had significant effects on wheat quality. The line with 1, 17 + 18, 2 + 12, Glu-A3c, Glu-B3b, Glu-D3c associated with superior mixograph properties, the line with 1, 7 + 9, 2 + 12, Glu-A3c, Glu-B3d, Glu-D3c had superior viscoelasticity of RWCN, and the line with 1, 7 + 9, 2 + 12, Glu-A3e, Glu-B3b, Glu-D3c had the highest total score of NSCSB. These results provide useful information for genetic improvement of the qualities of traditional Chinese wheat products. 相似文献
3.
Three types of wheat: 8901 (hard wheat), Nanyang white wheat, NYWW (medium wheat), and Australian white wheat, AWW (soft wheat) were milled after debranning by abrasion and friction, and by conventional milling. The quality of flours produced by the two procedures and their performance in steamed breadmaking were evaluated. The results showed that debranning affected both the quality of flour and the steamed bread, especially for 8901 and NYWW. Debranning lowered the gluten index, maximum resistance and starch damage; whereas, it increased pericarp content, ash content, L* value, falling number and particle size distribution. The pasting properties such as peak viscosity and final viscosity of NYWWDII and 8901DII were higher than those of NYWWCII and 8901CII. Debranning had positive effects on the quality scores, volume, volume/weight, height and structure of steamed bread from second flour, except for those from soft wheat. For the two other samples, the quality scores for steamed bread were lower than that for the conventional flour. The shape and structure of steamed bread from the top flours of AWWCII and 8901CII were better than from debranned flour. The milling methods did not affect the texture of steamed bread, except in the case of second flour of NYWW. 相似文献
4.
The aim of this study was to evaluate the effect of different polymerization degree of inulin on plain wheat dough rheology and quality of steamed bread. It was found the water absorption of dough decreased with the increasing of short-chain (FS) and natural inulin (FI) and increased with the increasing of long-chain inulin (FXL) higher than 7.5%. Three kinds of inulin all increased the development time, stability and farinograph quality number and decreased softening degree of the dough. When proof time was less than 90min, the extensibility increased with the substitution of 5% of FS, 5% of FI and 2.5% of FXL. The resistance to extension, ratio number of resistance to extensibility and energy all increased with the increasing of FS and FI as well as the time. While the energy increased with FXL substation at 45min and dropped thereafter, regardless of the concentration. The addition of inulin all enhanced the brightness, specific volume and hardness of steamed bread and decreased the water content, vaporization enthalpy, springiness, recovery, and cohesiveness. During the storage, inulin reduced the change rates of relative hardness, recovery, and cohesiveness and increased the change rate of relative enthalpy, which restrained the staling rate of steamed bread. 相似文献
5.
Breeders in South Africa are faced with the problem that quality testing is only done in advanced phases of the bread wheat breeding programme when enough seed is available. This means that lines not meeting quality requirements of the South African industry for cultivar release are only discarded during the advanced breeding phases. The aim of this study was to determine relationships between grain and milling characteristics and mixogram parameters and to determine whether these characteristics can be used for selection of acceptable mixogram parameters and vice versa. A mixograph with Mixsmart software was used to analyse 10 bread wheat cultivars, in four replications at three different locations. Thirteen mixogram parameters were used to determine correlations with important grain and milling characteristics. Highly significant correlations were observed between mixogram parameters and grain as well as milling characteristics, although not with hectolitre mass, thousand kernel mass, vitreous kernels, falling number or flour colour. Multiple coefficient of determination was low to moderate for grain characteristics and low for milling characteristics as independent variables in explaining the variation in several mixogram parameters. In spite of the highly significant correlations, grain and milling characteristics explained little of the variation in mixogram parameters in this study. 相似文献
6.
中麦175馒头和面条品质稳定性分析 总被引:1,自引:0,他引:1
为给优质小麦育种和生产提供参考依据,以优质小麦新品种中麦175于2010-2011年度在河北和北京14个地点的样品为材料,分析了磨粉品质、面粉和面片颜色、面团流变学和淀粉糊化特性、馒头和面条加工品质。结果表明,中麦175为馒头和面条兼用型优质品种,特点是软质、中偏弱的面筋强度、面粉颜色白,多数品质性状较稳定,籽粒硬度、PPO活性、面片a*值、稳定时间、拉伸面积、延展性和最大抗延阻力的变异系数较大,馒头加工品质地点间变异大于面条。磨粉品质和面团流变学参数对馒头加工品质有显著影响,籽粒硬度和出粉率对馒头表面颜色有显著负向影响,相关系数分别为-0.82(P<0.01)和-0.58(P<0.05);面粉L*值高,馒头加工品质好,二者相关系数为0.72(P<0.01);吸水率与馒头总分呈显著负相关(r=-0.84,P<0.01),稳定时间、拉伸面积、延展性和最大抗延阻力与馒头总分呈显著正相关,相关系数分别为0.85(P<0.01)、0.77(P<0.01)、0.62(P<0.05)和0.70(P<0.01)。降低PPO活性和吸水率,提高蛋白质含量、出粉率和黄色素含量可以改善面粉和面片颜色的亮白度,增加部分黄度,形成消费者可接受的奶白色。淀粉糊化特性对馒头和面条加工品质无显著影响。上述信息对改良小麦品质的稳定性有重要意义。 相似文献
7.
新疆冬小麦品种品质性状与面包、馒头、面条加工品质的关系 总被引:7,自引:0,他引:7
为了给优质面包、馒头、面条专用品种选育提供品质辅助选择指标,以30份新疆冬小麦品种(包括自育品种和引进品种)为材料,分析了新疆冬小麦品种品质性状与面包、馒头、面条加工品质的关系.回归分析结果表明,小麦籽粒性状、面粉品质、面团特性、淀粉糊化特性以及面粉色泽对新疆冬小麦品种面包、馒头和面条加工品质均有显著影响;面粉灰分、湿面筋、稀懈值、亮度和红度是影响面包、馒头和面条加工品质的共同品质性状;形成时间、稳定时间、延展度是影响面包和面条加工品质的共同品质性状;而籽粒性状仅对新疆冬小麦品种馒头加工品质有显著影响.相关分析结果表明,千粒重、形成时间、稳定时间、拉伸面积、最大拉伸阻力、红度和黄度与面包总分呈显著相关关系,相关系数分别为0.460、0.516、0.537、0.719、0.707、0.534和-0.403;籽粒蛋白质含量、面粉蛋白含量和湿面筋含量与馒头总分呈显著相关关系,相关系数分别为-0.397、-0.458和-0.552,面团延展度、稀懈值与面条总分呈显著相关关系,相关系数分别为0.438和0.432.从以上结果可以看出,面包与面团流变学特性,馒头与蛋白质和面筋数量,面条与面团流变学特性及淀粉糊化特性的关系更为密切,这些品质性状可以作为新疆冬小麦品种面包、馒头、面条加工品质改良时的辅助选择指标. 相似文献
8.
The gluten polymerization behavior, water content, starch crystallinity and firmness of Chinese steamed bread made from frozen dough were investigated and their correlations were also established in this study. The decreased degree of gluten polymerization in steamed bread was observed by the enhanced SDS-extractable proteins (SDSEPs) upon frozen storage. Less incorporation of glutenin in the glutenin–gliadin crosslinking of steamed bread mainly contributed to the decreased degree of gluten polymerization. The decreased moisture of steamed bread had a significant negative correlation with the sublimated water in frozen dough (r = −0.8850, P < 0.01). Frozen storage also induced an increase in starch crystallinity and bread firmness. A multiple linear regression model with SDS-extractable proteins, water content and melting enthalpy of starch crystals of steamed bread accounted for 86% of the variance in the natural logarithm of firmness and further revealed that starch crystallinity mainly contributed to bread firmness. 相似文献
9.
Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection 总被引:1,自引:1,他引:1
J. Bordes G. Branlard F.X. Oury G. Charmet F. Balfourier 《Journal of Cereal Science》2008,48(3):569-579
A core collection of 372 accessions representative of worldwide hexaploid bread wheat diversity [Balfourier, F., Roussel, V., Strelchenko, P., Exbrayat-Vinson, F., Sourdille, P., Boutet, G., Koenig, J., Ravel, C., Mitrofanova, O., Beckert, M., Charmet, G., 2007. A worldwide bread wheat core collection arrayed in a 384-well plate. Theoretical and Applied Genetics 114, 1265–1275] was used to evaluate the available genetic diversity of agronomic and quality characteristics. The traits assessed during the vegetative period were date of ear-emergence, date of flowering, lodging, disease susceptibility and pre-harvest sprouting. Thousand kernel weight, test weight, grain hardness, grain protein content, pentosan viscosity and grain colour were also measured. The rheological properties of the derived white flours were estimated using mixograph and alveograph tests. For most of the traits, a wide phenotypic variation was observed across all the accessions. Several parameters (mixograph width parameters before and after peak time, alveograph dough tenacity and extensibility, near infrared measurements, like those for protein content, and absorbance measurements of palmitic acid and linoleic acid content) made it easier to discriminate between the cultivars. The largest ranges of variation were found in landraces and old cultivars rather than in more recent varieties. This is evidence that there is sufficient variability available for rare alleles, which have been eliminated in breeding modern varieties to be detected. Such a core collection will therefore be a useful resource for future genetic studies on wheat quality. 相似文献
10.
Feng Chen Fuyan Zhang Xiyong Cheng Craig Morris Haixia Xu Zhongdong Dong Kehui Zhan Dangqun Cui 《Journal of Cereal Science》2010
A total of 169 wheat (Triticum aestivum L.) varieties (landraces and cultivars) were used to asses the relationship between Puroindoline D1 alleles and Puroindoline b-B2 variants and grain hardness, other grain traits, yield components, and flag leaf size. Results indicated that the average SKCS hardness of Pinb-B2v3 varieties was significantly greater than that of Pinb-B2v2 varieties within the soft Puroindoline D1 haplotype sub-group. Conversely, no statistically significant difference was obtained for SKCS hardness between varieties with the Pinb-B2v3 vs. Pinb-B2v2 alleles within the two hard Puroindoline D1 haplotypes (Pinb-D1b and Pinb-D1p sub-groups). Therefore, the Puroindoline b-B2 gene may have a bigger impact on soft wheat varieties than hard. Across all varieties, thousand-kernel weight, grain weight per spike, grain diameter, grain number per spike, flag leaf width and area of Pinb-B2v3 varieties were significantly greater than those possessing Pinb-B2v2. These results indicated that the Pinb-B2v3 allele was associated with preferable grain yield traits compared to the Pinb-B2v2 allele in bread wheat. This study provides evocative information for better understanding the molecular and genetic basis of wheat grain yield. 相似文献
11.
Jing Wang Jiazhu Sun Dongcheng Liu Wenlong Yang Daowen Wang Yiping Tong Aimin Zhang 《Journal of Cereal Science》2008,48(3):836-842
Kernel hardness is mainly conditioned by allelic variations of Pina-D1 and Pinb-D1 genes located on the short arm of chromosome 5D. In this work, the Ecotilling approach was optimized to investigate Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm, and three Pina and eight Pinb alleles were found. Generally, more Pinb alleles were detected in the accessions coming from the regions that grow winter or a mixture of spring and winter wheats. This was particularly evident for the Southwestern winter wheat, Xinjiang winter–spring wheat and Yellow and Huai River Valley winter wheat regions. A novel variant (designated as Pinb-D1x) was discovered in one of the accessions from the Xinjiang winter–spring wheat region. Compared to wild type (WT) allele Pinb-D1a, two nucleotide substitutions occurred in the coding region of Pinb-D1x, one (at nucleotide position 257) resulting in the replacement of a WT cysteine residue by tyrosine and the other (at nucleotide position 382) creating a premature stop codon. The implications of our data to understanding the diversity of Pina and Pinb alleles in wheat and to future molecular breeding of wheat kernel hardness are discussed. 相似文献
12.
Sidsel Jensen Henrik Oestdal Leif H. Skibsted Erik Larsen Anette K. Thybo 《Journal of Cereal Science》2011
Wheat bread and whole wheat bread were stored for up to 3 weeks and specific chemical reactions were related to perceptual flavour changes as analysed by sensory profiling. Volatile and non-volatile compounds were quantified using GC–MS and HPLC. Results were examined by multivariate data analysis. 相似文献
13.
Aili Wang Liyan Gao Xiaohui Li Yanzhen Zhang Zhonghu He Xianchun Xia Yong Zhang Yueming Yan 《Journal of Cereal Science》2008,47(3):528-535
Gliadin proteins of 113 common or bread wheat (Triticum aestivum L.) cultivars and advanced lines from China and other countries, were analyzed by high performance capillary electrophoresis (HPCE) and reversed-phase high performance liquid chromatography (RP-HPLC). A major protein peak migrating at 3 min by HPCE and eluting at about 20 min by RP-HPLC was identified in the ω-gliadin region. It was present in cultivars with good pan bread-making quality, whereas most cultivars with poor bread-making quality lacked this protein peak. Quality testing and statistical analysis showed that this ω-gliadin peak was significantly related to dough strength, loaf volume and loaf score. It was separated into two apparent protein components by one-dimensional SDS-PAGE and two-dimensional electrophoresis (2-DE). According to their relative mobilities on the gels, the proteins were designated ω-15 and ω-16, and their accurate molecular masses (42590.5 Da for ω-15 and 41684.1 Da for ω-16) were determined by MALDI-TOF-MS. The ω-15 and ω-16 gliadins possessed the N-terminal amino acid sequences of ARELNPSNKELQQQQ and KELQSPQQQF, and therefore they belonged to 1D-encoded ω-2 type and ω-1 type gliadins, respectively. Both gliadin subunits were always present together among the 86 cultivars analyzed, suggesting that they were encoded by two closely linked genes at Gli-D1 locus. The accumulative characteristics of gliadins during grain development indicated possible additive quantitative effects of ω-15+16 on dough strength. The ω-15 and ω-16 gliadins could be used as valuable genetic markers for wheat quality improvement. 相似文献
14.
The effect of technological processing on the contents of eight minerals – i.e., calcium, copper, iron, magnesium, phosphorous, potassium, selenium, and zinc – was investigated in pasta making. Milling of durum wheat as well as pasta making were carried out in a pilot plant by using three different grain samples. Pasta samples purchased on the market were also surveyed to gain information on the mineral content of commercial products. The effect of cooking was also investigated in order to determine the retention of the selected elements in the final ‘ready-to-eat’ product. Analyte concentrations in whole grains, semolina, pasta and cooked pasta were determined by inductively coupled plasma-mass spectrometry. 相似文献
15.
Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread 总被引:1,自引:0,他引:1
Pingping Zhang Zhonghu He Dongsheng Chen Yong Zhang Oscar R. Larroque Xianchun Xia 《Journal of Cereal Science》2007
Thirty-three cultivars and advanced lines originated from China, Mexico, and Australia were sown in four environments in Chinese spring wheat regions to investigate the association between gluten protein fractions determined by reversed-phase high-performance liquid chromatography (RP-HPLC), and dough properties and northern-style Chinese steamed bread (CSB) quality. The genotypes were divided into two groups of 10 and 23 entries with and without the 1B/1R translocation, respectively. 1B/1R translocation lines had significantly high amounts of ω -gliadins, and low levels of glutenin and low molecular weight glutenin subunits (LMW-GS), but no significant difference in dough properties and CSB quality from non-translocation lines. The association between protein fractions and dough properties, and CSB quality largely depended upon the presence of 1B/1R translocation. Gliadin contributed more in quantity to flour protein content (FPC) than glutenin, while glutenin and its fractions contributed more to dough strength and CSB quality. Among non-translocation lines, moderate to high correlation coefficients between quantified glutenin and its fractions, and farinograph development time (DT, r=0.85–0.92) and stability (ST, r=0.81–0.93), extensograph maximum resistance (Rmax, r=0.90–0.93), CSB stress relaxation (SR, r=0.55–0.61) and CSB score (r=0.56–0.62), were observed. Gliadin:glutenin ratios showed significant and negative associations with dough properties and CSB quality. Correlation coefficients between gliadin:glutenin, gliadin:HMW-GS, gliadin:LMW-GS ratios, and CSB score were −0.79, −0.73, and −0.79 among non-translocation lines, respectively. HMW-GS and LMW-GS, x-type HMW-GS and y-type HMW-GS contributed similarly to dough properties and CSB quality for non-translocation lines. Weak correlations between protein fractions and dough properties, and CSB quality were observed among translocation lines. This information should be useful for improvement of dough properties and CSB quality. 相似文献
16.
为了探讨新疆冬小麦品种Pins基因等位变异对小麦磨粉品质和新疆拉面加工品质的影响,对109份新疆冬小麦品种的籽粒硬度及其Pins基因等位变异、磨粉品质和新疆拉面加工品质进行测定,初步分析了新疆冬小麦品种资源籽粒硬度Pins基因的分布规律以及不同 Pins基因等位变异对籽粒硬度、磨粉品质和新疆拉面加工品质的影响。结果表明,新疆冬小麦品种属硬质麦类型,Pins基因型以 Pina-D1a、 Pinb-D1b和 Pina-D1a/ Pinb-D1b为主, Pins突变类型及Pins突变基因型组合类型小麦的籽粒硬度均显著高于野生型, Pinb-D1a基因型小麦的籽粒硬度最低,L*值和a*值最高,b*值最低; Pinb-D1ab基因型小麦的吸水率最高。不同Pins基因型组合中,野生型小麦的籽粒硬度、b*值和吸水率最低; Pina-D1a/ Pinb-D1aa的出粉率最高, Pina-D1a/ Pinb-D1ab的灰分含量最低,吸水率最高。Pins基因及其基因型组合对新疆拉面加工品质无直接影响,主要通过对灰分、面粉色泽和吸水率等磨粉品质的作用对新疆拉面产生间接影响。优质新疆拉面品种中,Pinb基因突变对新疆拉面加工品质的影响大于Pina基因突变,育种中应优先选择Pinb 基因突变型材料,其中 Pina-D1a/ Pinb-D1b可以作为重点选择的基因型组合。 相似文献
17.
Wheat germ flour (WGF) has been developed as a functional food ingredient with high nutritional value. In this study, WGF was applied in steamed bread-making in order to improve the quality of Chinese steamed bread (CSB). Partial substitution of wheat flour with WGF at levels of 3%, 6%, 9% and 12% (w/w) was carried out to investigate physicochemical properties of blends and their steaming performance. Falling number (FN) values of composite flours ranged from 199 to 223 s. Viscosity analysis results showed that wheat flour mixed with WGF had higher pasting temperature and lower viscosities. Dough rheological properties were also investigated using farinograph and extensograph. The addition of WGF diluted the gluten protein in dough and formed weak and inextensible dough, which can be studied by scanning electron microscope (SEM) analysis. CSB made with WGF had significantly lower volume, specific volume and higher spread ratio. The sensory acceptability and physicochemical quality of CSB were improved with the application of a low level of WGF (3% and 6%). However, results showed that a high level of WGF over 9% is not recommended because of unsatisfactory taste. As a whole, addition of appropriate level of WGF in wheat flour could improve the quality of CSB. 相似文献
18.
Hongbo Ma Xiao Zhang Canguo Wang Derong Gao Boqiao Zhang Guofeng Lv Ronglin Wu Xiaoming Cheng Xiue Wang Shunhe Cheng Tongde Bie 《Journal of Cereal Science》2013
The effect of wx genes on amylose content, physicochemical properties of wheat starches, and the quality of Chinese crisp stick were investigated using near-isogenic lines (NILs) with null wx alleles in Yangmai 17 and Yangmai 01-2 backgrounds. wx genes showed significant effects on amylose content and other traits. The triple-null genotype had the lowest amylose content among eight genotypes, followed by double-null, single-null, and wild-type genotypes. The triple-null also showed lower flour yield, higher percentage of type B-granules on a volume basis and higher crystallinity than non-waxy genotypes, and showed significant differences in all pasting and thermal transition parameters compared to non-waxy genotypes, except for degree of retrogradation at day 14. For the quality of Chinese crisp stick, the hardness, crispness, fracturability, and specific volume of waxy genotype were 3.91 kg, 11.0, 1.85 mm and 104.4 ml, whereas the corresponding ranges for non-waxy genotypes were 5.39–5.70 kg, 0.5–0.9, 0.69–0.86 mm and 49.5–57.6 ml, respectively, in Yangmai 17 background. This indicates that waxy genotypes showed significantly better crisp stick quality than non-waxy genotypes. A similar trend was also observed in Yangmai 01-2 background. This indicated the potential utilization of waxy wheat for producing traditional products. 相似文献