首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
加拿大西部起伏地貌的地形指数与产量变异性   总被引:1,自引:0,他引:1  
Understanding the relationships between topographic indices and crop yield variability is important for soil management and crop production in rolling landscape. Two agricultural fields at Alvena and Hepburn, Saskatchewan, Canada were selected to examine how topographic indices were related to wheat yield under two topographic and weather conditions in the Canadian prairies. The landscapes of the two sites are classified as hummocky and the dominant soil type is an Aridic Ustoll. The relationships among yield, topography, soil, and weather were analyzed using wheat (Triticum aestivumL.) grain yield from Alvena in 2001 (dry year) and 2004 (wet year) and from Hepburn in 1998 (dry year). Topographic/soil indices included relative elevation, wetness index, upslope length, curvature, soil organic matter, and soil moisture storage before seeding. The results indicated that, in the dry years, the correlation coefficients between upslope length and grain yield were 0.79 for the typical rolling landscape (Alvena) in 2001 and 0.73 for shallow gentle rolling landscape (Hepburn) in 1998. In the wet year (2004), the relationships between yield and topographic/soil attributes were not as strong as in dry years. Therefore, upslope length was the best yield indicator for the two landscapes in dry years, whereas no topographic indices were highly correlated to crop yield in wet years. Those topographic indices seemed useful in identifying the yield variability and delineating the proper management zone.  相似文献   

2.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

3.
Salt balance in simulated soil coulumns was calculated on the basis of a large amount of long term observation data.The results showed that under the climate conditions of semi-arid region of the Huang-Huai-Hai Plain,the soils in the columns were under salt accumulation conditions when the groundwater depth was controlled at less than 2.0m,and under desalinization conditions when at larger than 2.5m.In the soil columns with clay soil and silty loam soil intercalated with a clay layer,the amount of salt accumulated was far less than that in the soil column with silty loam soil throughout the whole profile.Under no irriagtion conditions crop planting may increase groundwater evaporation and hence salt accumulation in soil,making the soil columns under desalinization be under salt accumulation conditions.  相似文献   

4.
Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min~(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min~(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.  相似文献   

5.
长期稻田垄作免耕对土壤性质和水稻产量的影响   总被引:4,自引:0,他引:4  
A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system.  相似文献   

6.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

7.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

8.
Through a simulation test carried out with soil columns (61.8cm in diameter),the effect of precipitation on salt-water dynamics in soils was studied by in-situ monitoring of salt-water dynamics using soil salinity sensors and tensioneters.The results show that in the profile of whole silty loam soil,the surface runoff volume due to precipitation and the salt-leaching role of infiltrated precipitation increased with the depth of ground water;and in the profile with an intercalated bed of clay or with a thick upper layer of clay,the amount of surface runoff was greater but the salt-leaching role of precipitation was smaller than those in the profile of whole silty loam soil.In case of soil water being supplemented by precipitation,the evaporation of groundwater in the soil columns reduced,resulting in a great decline of salt accumulation from soil profile to surface soil.The effect of precipitation on the water regime of soil profile was performed via both water infiltration and water pressure transfer.The direct infiltration depth of precipitation was less than 1m in general,but water pressure transfer could go up to groundwater surface directly.  相似文献   

9.
Ten different casing soils were collected from two soils at two depths (0.2 and 2.0 m below soil surface) to examine the relationships between the physical properties of non-axenic casing soil and yield,number and weight of the medicinal mushroom Agaricus blazei ss.Heinemann.The results showed that soil clay content and bulk density were negatively correlated with the mushroom yield,respectively,but soil silt content and water-holding capacity were found to be positively correlated with the yield.The number of mushrooms was negatively correlated with soil water-holding capacity but positively correlated with soil clay,bulk density and porosity.The weight of mushroom was positively correlated with the content of soil fine sand and negatively correlated with the contents of soil coarse sand,total sand and clay.Neither soil depth nor different soil combinations affected the yield and number of mushrooms,but the mushroom weight was affected by the soil combinations and soil depth,so interplay in the fructification process with the physical characteristics of casing is complicated.  相似文献   

10.
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability.  相似文献   

11.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

12.
Abstract

Corn yields (Zea mays L.) on control treatments with inorganic fertilizer and on copper‐enriched hog manure treatments with annual rates up to 168 mt/ha from a 16‐year study were modelled with the Erosion Productivity Impact Calculator (EPIC) simulation model. The field research study was conducted on three diverse soils, a Guemsey silt loam, a Bertie fine sandy loam, and a Starr‐Dyke clay loam. Results indicated that EPIC simulated the manure and fertilizer treatments equally well. EPIC produced simulated yield means that were not different from measured yield means for all treatments (p ≤ 0.05). Goodness of fit tests indicate that simulated yields did not differ from measured yields for all simulation models except the Bertie manure treatment (p ≤ 0.05). For control and manure treatments, simulated yields explained 78% and 89% of variation in measured yields for the Guernsey soil, 55% and 42% for the Bertie soil, and 76% and 70% for the Starr‐Dyke soil, respectively. Overall, these are reasonable yields estimates, but site‐specific soil and other model parameter respecification is critical. Yield modeling with heavy applications of animal manure or inorganic fertilizer is feasible and useful.  相似文献   

13.
Abstract

Winter wheat (Triticum aestivum L.) occupies large hectarage and is important in crop rotations on the highly weathered, low organic matter silt loam soils common in southern Illinois and the southern midwest United States region. Sulfur (S) is an essential element with some potential for deficiency, but it is not commonly applied to winter wheat grown on these soils. This study was conducted to determine if S nutrition is limiting winter wheat growth and grain yield. Interactive effects of topdressed fertilizer S (0 and 28 kg S/ha), tillage (disk‐till, DT and no‐till, NT), and wheat variety on plant growth, nutrient concentration, and grain yield were investigated for three crop years on two soils in southern Illinois; Cisne silt loam (fine, montmorillonitic, mesic Mollic Albaqualf), Brownstown site, and Grantsburg silt loam (fine‐silty, mixed, mesic Typic Fragiudalf), Dixon Springs site. Grain yield was unaffected by S application although flag leaf and whole plant S concentrations increased. Lack of yield response to S application was consistent each year on both soils and across all varieties and tillage systems. Equivalent yields were produced with both tillage systems at Brownstown, but slightly lower yield occurred with no‐till at Dixon Springs. Plant S concentrations and soil sulfate levels indicated sufficient S was available from sources other than fertilizer S, including extractable soil S and atmospheric deposition. Wheat variety consistently influenced plant nutrient composition and grain yield more than tillage or application of S fertilizer. If, in the future, wheat grain production, atmospheric S deposition, and extractable soil S remain at levels measured in this study, then S fertilizer applications would not be expected to increase winter wheat grain yield.  相似文献   

14.
为了尝试计算机模拟方法能否成为制定作物保险保费的辅助性工具,该研究运用计算机模拟模型预测冰雹对作物产量的影响。通过对现有EPIC(综合气候因素的环境政策)模型增加冰雹天气模块,即冰雹事件发生概率的数学模型,模拟冰雹对作物产量的影响。除此之外,该研究还模拟了干旱和霜冻等天气因素对美国Iowa,Illinoi和Indiana等3个玉米带州作物产量的影响。首先介绍数据来源及处理方法,讨论建立冰雹模拟模型过程以及对模型进行有效性检验;然后运用统计分析方法对模型模拟结果与实际观察结果进行比较,检验模型模拟结果的准确性。结果表明EPIC模型可以达到95%甚至更高的产量预测的准确性;同时,冰雹灾害模拟结果也可以达到一个较为合理的准确性(R2>0.7)。这些结果表明本研究所建立的增加冰雹模块的EPIC模型可以作为一个较为可靠的冰雹引起的作物产量损失的预测方法.该模型可以用来模拟冰雹事件发生的概率以及其对各种作物产量造成的损失。  相似文献   

15.
Surfactants in herbicide formulations eventually enter soil and may disrupt various processes. Research examined effects on nutrient uptake in corn caused by surfactants, herbicides, and surfactant-herbicide combinations applied to silt loam and silty clay loam soils in the greenhouse. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Corn was planted in fertilized soils with moisture content maintained for optimum growth. Foliage (V8 growth stage) was collected for elemental analyses. Nutrient uptake differed with soil texture. Nutrient uptake from silty clay loam was more affected by surfactants and/or herbicides than in silt loam. Potassium uptake was significantly (P = 0.05) decreased in silt loam only by Thrust but uptake of phosphorus (P), potassium (K) calcium (Ca), sulfur (S), copper (Cu), and zinc (Zn) decreased by ≤30% in silty clay loam treated with surfactants. Surfactants and/or herbicides may interact with soil texture to affect nutrient uptake. Long-term field studies to validate changes in nutrient uptake and grain yields after annual applications of surfactants plus herbicides are needed.  相似文献   

16.
Increasing fertilizer costs have prompted farmers to ask whether soils could be maintained at lower levels of plant‐available phosphorus (Olsen P) than currently recommended without losing yield. To help answer this question, we assessed the response to Olsen P by spring barley grown from 1986 to 1991, followed by winter wheat from 1992 to 2008, on a silty clay loam soil. Each year the curve relating grain yield to Olsen P was fitted statistically to determine the asymptotic yield and the Olsen P associated with 98% of that yield, that is, the critical level of Olsen P. The variance accounted for by the relationship ranged between 83 and 97% in all but two years, suggesting that the availability of soil P was the major soil factor affecting yield and that Olsen P was a reliable measure of plant‐available P in soil. Asymptotic annual yield of spring barley ranged from 2.34 to 7.12 t/ha and of winter wheat from 3.87 to 10.36 t/ha. In part, this range in yields was because of changes in the cultivar grown while the range of yields for any one cultivar was probably due to differences in weather, principally rainfall, between years. Critical Olsen P ranged from 7 to 18 mg/kg for both cereal crops (with one outlier at 26 mg/kg for winter wheat) most probably due to seedbed and soil structure conditions affecting root growth, and thus acquisition of available soil P, and the way these soil factors were affected by weather. Thus, a general recommendation for cereals grown on this silty clay loam, which is comparatively easy to cultivate, would be to maintain Olsen P at about 20 mg/kg in the plough layer to minimize the risk of losing yield in some years. This value, 20 mg/kg, equivalent to 20 mg/L, is the midpoint of P Index 2, the recommended P Index given in the Fertiliser Manual (RB209) (Defra 2010) for soils growing arable crops and grass in England, Wales and Northern Ireland.  相似文献   

17.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

18.
Abstract

Experiments were conducted in Keiser, Arkansas on a Sharkey silty clay soil for three years to examine soybean, wheat, and grain sorghum rotations. Treatments also included selected variation of conventional versus no till and alternative wheat residue management. Both irrigated and nonirrigated strategies were investigated. Agronomic results show that irrigated soybean yields average about 1,344 kg ha‐1 (20 bu A‐1) higher than comparably treated nonirrigated soybean treatments. Economic analysis using enterprise budgets reveals three top rotations regardless of irrigation: continuous monocropped soybean, wheat fallow followed by monocropped soybean, and wheat‐soybean double‐cropped with burned wheat stubble. Statistical analysis demonstrates the profitability of irrigation and the dependence of the most economical crop rotation upon weather conditions.  相似文献   

19.
Soil tilth has been defined in terms of a ‘Physical Index’ based on the product of the ratings of eight physical properties — soil depth, bulk density, available water storage capacity, cumulative infiltration or apparent hydraulic conductivity, aggregation or organic matter, non-capillary pore space, water table depth and slope. The Physical Index and a tillage guide were used to identify the tillage requirements of different soils varying in texture from loamy sand to clay in the semi-arid tropics. The physical index was 0.389 for a loamy sand, 0.518 for a black clay loam and 0.540 for a red sandy loam soil and the cumulative rating indices in summer and winter seasons were 45 and 44 for loamy sand, 52 and 51 for red sandy loam and 54 and 52 for black clay loam soils, respectively. The compaction of the loamy sand by eight passes of a 490 kg tractor-driven roller (0.75 m diameter and 1.00 m length) increased the physical index to 0.658 and chiselling of the red sandy loam and black clay loam increased the physical indices to 0.686 and 0.729, respectively. The grain yields of rainfed pearl millet and guar and irrigated pearl millet, wheat and barley increased significantly over the control (no compaction) yields by compaction.

The chiselling of the soils varying in texture from loamy sand to clay at 50 to 120-cm intervals up to 30–40 cm depth, depending upon the row spacing of seedlines and depth of the high mechanical impedance layer, increased the grain yields of rainfed and irrigated maize on alluvial loamy sand, rainfed maize on alluvial sandy loam and red sandy loam, rainfed sorghum on red sandy loam and black clay loam, irrigated sorghum on black clay loam and rainfed black gram on red sandy loam, pod yield of rainfed groundnut, tuber yield of irrigated tapioca and fresh fruit yield of rainfed tomato on red sandy loam and sugarcane yield on black clay soil, significantly over the yields of no-chiselling systems of tillage such as disc harrow and country plough.  相似文献   


20.
Abstract

The objective of this study was to provide agronomic, nematode, and economic analysis of alternative production rotation systems for soybeans (Glycine max L. Merr.) on a silt loam soil association in Arkansas. Monocropped soybeans and soybeans double‐cropped with wheat (Triocum aestivam L.) was included as well as grain sorghum (Sorghum bicolor L. Moench) under dryland conditions in order to reduce soybean cyst nematode (SCN, Heteroderaglycine Ichinohe) populations. A total of seven crop rotations and eleven treatments that included alternative tillage conditions and wheat stubble management practices were analyzed using data from 1980–1984 experiments conducted at the Arkansas Cotton Branch Experiment Station on a silt loam Loring‐Calloway‐Henry Association (Alfisols). Although crop rotation was effective for nematode suppression, yields for double‐cropped soybeans were comparable to soybean yields under monocropped’ continuous management practices. Economic results indicated that average net returns of $338.50 per hectare (about $ 137 per acre) were highest for the continuous double‐cropped wheat‐soybean production management systems which combine the conventional tillage method with burning of wheat stubble. For the conditions analyzed and level of SCN present, this research provides evidence that control of the soybean cyst nematode through rotation practices that utilize grain sorghum is not economically efficient where continuous double‐cropped wheat‐soybeans systems can be incorporated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号