首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
钾通道与钾转运体是植物钾离子吸收的重要途径。根据其蛋白结构与功能的不同,可分为Shaker钾通道家族、TPK钾通道家族、Kir-like钾通道家族、GNGC钾通道、KUP/HAK/KT钾转运体家族、HKT钾转运体家族、CPA钾转运体家族,这些蛋白家族均在不同植物或同种植物的不同组织器官中有所表达。分别从结构、功能以及相关蛋白3个方面出发,对上述钾通道和钾转运体家族的分子生物学研究进展进行了详细的综述。  相似文献   

2.
为挖掘蓖麻耐盐相关基因,以盐生植物蓖麻(Ricinus communis L.)叶片为材料。设计特异性引物,克隆高亲和性钾离子转运蛋白(high-affinity K+transporter,HKT)耐盐基因,并对其序列进行生物信息学分析。结果表明,该基因全长1 596 bp,编码531个氨基酸,推测分子量为59.74 kD,等电点(pI)为9.32。多重序列比对和系统发育树分析表明该蛋白与木薯和橡胶树的同源性最高,分别为69.13%和67.03%,且与HKT1蛋白家族成员同源性较高,为S-G-G-G类型蛋白,推测该蛋白为HKT1类蛋白。二级结构预测蓖麻HKT蛋白有9个跨膜结构域,主要定位于内质网上,是典型的跨膜蛋白。根据蓖麻HKT基因序列设计带有Bam HⅠ和PstⅠ酶切位点的引物扩增出全长基因,用限制性内切酶Bam HⅠ和PstⅠ进行双酶切后与表达载体pCHF-3300连接。本研究成功构建了蓖麻HKT基因的表达载体,为进一步研究该基因的转化及功能验证提供参考。  相似文献   

3.
HKT蛋白家族主要参与控制K+的吸收和K+/Na+的选择性运输,对提高植物抗胁迫能力具有重要的作用。为了研究At HKT1组织表达水平与植物耐盐性的关系,利用生物信息学技术对HKT类蛋白的同源性、At HKT1基因表达情况及其启动子顺式作用元件进行分析和预测,在此基础上将At HKT1启动子导入到本生烟草细胞中,根据GUS染色结果,分析At HKT1基因在本生烟草中的组织表达水平。生物信息学分析结果显示,拟南芥和小麦处于不同的进化分支,亲缘关系较远,提示At HKT1的功能可能与小麦中相应蛋白存在一定的差异。At HKT1基因在拟南芥许多器官和组织中都有丰富的表达,其中在叶、根和花中的表达量较高,证实At HKT1基因可能具有重要的生理功能。At HKT1启动子可能是一个逆境响应启动子,包含多种能够响应环境胁迫的重要元件。因此,At HKT1基因表达很可能受到环境胁迫的调控。GUS染色结果显示,转pHKT1-gus本生烟草幼苗叶、维管系统、根以及花的染色较深,进一步证实At HKT1在这些区域表达量较高。以上结果表明,At HKT1基因表达调控有利于实现Na+的转运,进而调节植物耐盐性。除此之外,还可能有其他一些未知的功能,这进一步增加了At HKT1功能的复杂性。目前,有关HKT类蛋白K+和Na+转运方式的机制并不明确,通过分析At HKT1基因在本生烟草中的表达水平,为进一步了解At HKT1基因的作用机制提供参考。  相似文献   

4.
植物K+吸收转运的分子机制研究进展   总被引:3,自引:0,他引:3  
鲁黎明  杨铁钊 《棉花学报》2006,18(6):379-385
K 在植物的生命活动中发挥着十分重要的作用。植物对K 的吸收,可分为高亲和吸收与低亲和吸收两个组分。在分子水平上,高亲和吸收主要由KUP/HAK/KT及HKT家族的K 转运蛋白来承担;而Shaker、KCO等家族的K 通道蛋白,则主要在植物的低亲和吸收中发挥重要作用。在高等植物K 吸收转运的分子机制的研究中,KAT1及AKT1是两个最先克隆出来的K 通道基因。植物中最先克隆出来的高亲和K 转运体基因,是小麦的HKT1。在棉花的生长发育过程中,K 的作用十分关键。棉花的K 转运蛋白GhKT1在棉纤维的发育中至关重要。综述了高等植物K 吸收运转及调节的分子机制研究方面的最新进展,并对研究的前景进行了展望。  相似文献   

5.
阳离子转运载体HKT(high-affinity K~+transporter)类蛋白既是高亲和的K~+转运载体,也是一种Na~+转运体,具有Na~+和K~+转运的双重功能,对调节细胞内Na~+/K~+动态平衡起着决定性作用。胡杨长期生长在盐渍化和干旱的土壤环境,对高盐和干旱形成了极强的适应能力,是典型的耐盐抗旱植物,成为研究多年生林木抗逆适应机制的理想材料。以胡杨根系为材料,本研究克隆鉴定了一个胡杨Peu HKT1基因,该基因含有3个外显子和2个内含子;其c DNA全长为1 076 bp,包括13 bp的5'端非翻译区(5'UTR)和232 bp的3'端非翻译区(3'UTR);长831 bp的开放阅读框(open reading frame,ORF)可编码276个氨基酸;其编码蛋白含有丰富的α-螺旋,存在多个跨膜结构域,蛋白质相对分子量(MW)为31.54 k D;理论等电点(p I)9.36;实时定量PCR技术构建了Peu HKT1基因在高盐胁迫条件下的动态表达模式,探讨了该基因参与胡杨高盐胁迫响应的信号转导途径。  相似文献   

6.
HKT基因家族在植物维持体内Na+/K+平衡的过程中发挥着重要作用。为了研究普通小麦HKT基因家族在小麦耐盐机制中的作用,采用转化酵母突变菌株G19的方法,对普通小麦HKT基因家族的不同成员,同一成员在不同染色体上的拷贝以及同一成员等位基因的Na+亲和力进行了比较分析。普通小麦HKT基因家族的3个成员(HKT1;5、HKT2;1和HKT2;2)与Na+亲和力不同。HKT2;2-A的Na+亲和力高于HKT2;2-B。单氨基酸突变Leu48→Pro48提高了HKT2;1对Na+的亲和力,而突变His215→Tyr215降低了HKT2;1对Na+的亲和力,这表明,Leu48和His215可能与普通小麦HKT2;1 Na+转运功能有关  相似文献   

7.
大豆TRK-HKT家族基因结构及逆境胁迫响应机制   总被引:2,自引:0,他引:2  
殷桂香  张磊  佘茂云 《作物学报》2015,41(2):259-275
植物TRK-HKT家族基因广泛介导植物Na+/K+运输,参与植物耐逆境胁迫调控。本研究以6个大豆钾利用效率差异品种为材料,利用in silico技术克隆到4个大豆TRK-HKT家族成员(Gm HKT1;1、Gm HKT1;2、Gm HKT1;3和Gm HKT1;4),采用q RT-PCR技术解析这些基因在低钾及逆境胁迫下的表达机制。结果表明,Gm HKT1;2在大豆幼苗根中对低钾胁迫的响应明显高于其他3个基因,且钾高效大豆品种这种响应更明显;同时Gm HKT1;2对不同逆境胁迫(低温、干旱、高盐和ABA)也有较强的响应。蛋白结构分析表明,仅Gm HKT1;2具有4个MPM结构域,4个保守的氨基酸残基空间上形成一个"漏斗样"结构,充当K+/Na+转运通道,通过邻近的ATP结合结构域,为K+/Na+转运提供能量。基因结构分析显示,这些基因均含3个外显子和2个内含子,不同基因间的第一个外显子和内含子片段大小差异显著,导致各基因的基因组DNA(g DNA)大小各异。启动子分析揭示,大豆TRK-HKT家族成员包含参与种子功能定位和各种激素及逆境胁迫应激反应的重要顺式作用元件;进化上该家族基因位于第一进化分支,含保守的Ser–Gly–Gly–Gly基序。  相似文献   

8.
植物糖转运蛋白SWEET基因家族是近年来发现的一类重要的糖转运蛋白,通过调节糖分在植物体内的转运及分配等,进而在植物的生长发育、生理代谢、抗逆境胁迫等方面起着重要作用。不同物种中SWEET基因所表现的生物学功能不同,对植物生物生命活动起着重要影响。本研究报告了植物SWEET基因家族的蛋白结构、转运机制以及生物学功能的研究现状,旨在为进一步研究SWEET基因家族的其他结构与功能提供理论基础。  相似文献   

9.
不同盐碱区白榆、白蜡、紫穗槐、柽柳体内离子分布特征   总被引:4,自引:0,他引:4  
以沧州地区不同盐碱区域内(非盐、轻盐、中盐、重盐)白榆、白蜡、紫穗槐、柽柳4种植物为实验材料,分析了不同盐碱区域内4种植物体内Na^+、K^+、Ca^2+含量,及在4种植物体不同器官中的运输和分配特点。结果表明,不同盐碱区4种植物体内Na^+、K^+、Ca^2+含量不同,并存在明显差异;其变化规律表现为:各植物体内Na^+含量随盐碱区盐分含量的增加而迅速提高,但不同器官提高幅度不同,总体表现为根〉叶〉茎;K^+、Ca^2+含量在重盐区各树种均有所下降,其中,Ca^2+含量下降的幅度较大;各植物体内Na^+/K^+、Na^+/Ca^2+的值随区域盐分含量的增加而提高,但不同器官升高幅度不同,其根部明显高于其他两种器官,且存在显著性差异。柽柳、白榆对K+、Ca2+向茎叶部的选择运输性比白蜡、紫穗槐的高,而对Na+的选择运输性则低于白蜡、紫穗槐。综合分析,4种植物中柽柳的耐盐能力最强,白榆次之,白蜡、紫穗槐较差。  相似文献   

10.
植物Pht1家族磷转运子的分子生物学研究进展   总被引:6,自引:1,他引:6  
植物磷转运子是植物磷营养中的重要蛋白之一。对植物磷转运子蛋白的拓扑结构、功能及其基因的调控和表达位点的研究,揭示了植物磷转运子各家族中各成员在磷代谢中的角色。植物磷转运子中Pht1家族是一类H2PO4-/H 共转运子,该家族主要成员在植物根系中负责磷的吸收、转运,其表达受磷调控,因此是研究得最为深入的植物磷转运子家族。本文总结了植物Pht1家族磷转运子的最新研究进展,讨论了植物磷转运、分配的分子机理,并指出今后研究的主要方向,为开拓改良植物磷效率的新思路提供依据。  相似文献   

11.
ABCC蛋白为ABC转运蛋白超家族中的一个亚家族,主要参与将各种分子从细胞质输出到外部介质或细胞器基质的过程。为了研究OsABCC10基因是否参与水稻Na+的运输,本研究从水稻基因组中克隆出OsABCC10基因,该基因cDNA全长4539 bp,编码1513个氨基酸。OsABCC10基因表达分析发现,其主要在水稻根中表达,表达量随盐处理浓度的升高及处理时间的延长而增强,表明OsABCC10基因的表达受盐胁迫的调控。亚细胞定位分析证实OsABCC10定位于液泡膜上。盐胁迫条件下,与野生型相比,osabcc10突变体表现出对盐更敏感,而且木质部汁液中Na+浓度升高。然而,当OsABCC10基因导入野生型酵母菌株BY4741表达时,与对照组实验相比,有OsABCC10表达的酵母细胞的生长受到了抑制。该结果与植物生理实验结果相反,这可能与OsABCC10蛋白在酵母中的定位有关。本研究初步推测OsABCC10基因参与水稻Na^+的转运,是一个新的耐盐基因。  相似文献   

12.
植物耐盐相关基因及其耐盐机制研究进展   总被引:12,自引:0,他引:12  
植物的耐盐性是一个复杂的数量性状,涉及诸多基因和多种耐盐机制的协调作用。本文综述了近年来国内外在植物耐盐分子方面的研究成果与最新进展。Na /H 反向转运蛋白、K 转运体HAK和K 转运的调控基因AtHAL3a、高亲和性K 转运体HKT等通过调控植物体内离子跨膜转运,重建体内离子平衡来抵御盐渍伤害;Δ'-二氢吡咯-5-羧酸合成酶(P5CS)和Δ'-二氢吡咯-5-羧酸还原酶(P5CR)基因、胆碱单加氧酶(CMO)和甜菜碱醛脱氢酶(BADH)基因、1-磷酸甘露醇脱氢酶(mtlD)和6-磷酸山梨醇脱氢酶(gutD)基因以及海藻糖合成酶基因等通过合成渗透保护物质维持细胞的渗透势、清除体内活性氧和稳定蛋白质的高级结构来保护植物免受盐渍胁迫伤害;植物细胞中的超氧化物歧化酶(SOD)、过氧化氢酶、抗坏血酸-谷光苷肽循环中的酶等在清除细胞内过多的活性氧方面起重要作用;水通道蛋白基因与晚期胚胎发生丰富蛋白(LEA蛋白)基因参与多种胁迫的应答,它们与保持细胞水分平衡相关;另外,与离子或渗透胁迫信号转导相关受体蛋白、顺式作用元件、转录因子、蛋白激酶及其它调控序列可以启动或关闭某些胁迫相关基因,使这些基因在不同的时间、空间协调表达,以维持植物正常的生长和发育。本文还在小结中从整体水平上阐述了植物感受盐渍胁迫和其应答的基本分子机理。为植物耐盐机理的进一步研究及培育耐盐植物奠定了理论基础。  相似文献   

13.
刺槐Na+/H+逆向转运蛋白RpNHX1基因的分离和生物信息学分析   总被引:1,自引:0,他引:1  
盐分胁迫严重影响植物生长和产量.为了研究木本植物对盐分的适应性,利用5'RACE技术,从刺槐中克隆得到液泡Na /H 逆向转运蛋白基因RpNHX1.该基因长度为2 281 bp,含有一个开放阅读框,编码535氨基酸残基组成的蛋白,该蛋白序列与大豆GmNHX1和拟南芥AtNHX1相似,氨基酸的同源性分别达85%和69%,RpNHX1属于NHX亚族的NHX-I分枝.用生物信息学的方法预测RpNHX1具有所有Na /H 逆向转运蛋白共同的结构特点,即含有疏水的N末端,10个跨膜螺旋区域和一个具有调节功能的C端亲水区域,其中氨氯吡嗪咪敏感基序和CaM结合域也是保守的.在4和5的螺旋区域之间,存在有一串带负电荷氨基酸,显示出有规律的排列模式,这些模式在生物界中的Na /H 转运蛋白中是保守的.结合亲疏水资料,我们认为Na /H 转运通道结构可能存在于这一区域.另外,也分析了RpNHX1可能的糖基化、酰基化和磷酸化位点.从这些数据中可以看出,RpNHX1可能在细胞中起到Na 区隔化作用.  相似文献   

14.
为探索适宜的穗肥品种与施用量,研究不同穗肥配置对比植株性状、产量及结构、成本与效益差异。结果表明:穗肥增施钾有利于大穗形成,有利于产量获得;水稻穗肥施尿素+氯化钾或尿素+BB肥(15-15-15),效果好于单纯施用尿素、专用穗肥(34-0-6)。  相似文献   

15.
镉对鸡卵巢发育及卵巢组织ATP酶活性的影响   总被引:1,自引:0,他引:1  
【研究目的】为了探讨镉对性未成熟鸡卵巢发育的毒性机制,从分子水平阐述镉中毒的发病机理,增强人类环境保护意识,避免畜、禽镉中毒的发生。【方法】在饲料中加入140mg/kgCdCl2 、210mg/kgCdCl2建立亚慢性镉中毒模型,分别在试验20d、40d、60d取卵巢称重,进行Na+-K+-ATPase,Mg2+-ATPase和Ca2+-ATPase活性检测。【结果】对照组卵巢组织内Na+-K+-ATPase,Mg2+-ATPase和Ca2+-ATPase活性随日龄增加呈上升趋势,各时间点酶活性比较差异不显著;加镉组卵巢组织内Na+-K+-ATPase,Mg2+-ATPase和Ca2+-ATPase活性随日龄增加呈降低趋势,与对照组比较差异显著或极限著,且呈一定的时间-剂量效应。【结论】镉能够抑制性未成熟鸡卵巢发育,降低卵巢组织ATPase活性,二者存在一定相关性。  相似文献   

16.
为探明大豆中HKT蛋白基因的耐盐作用机理,从耐盐大豆材料中克隆到GmHKT6;2基因完整的cDNA序列,GmHKT6;2基因的开放阅读框(ORF)全长1 644 bp,编码547个氨基酸。序列比对与进化树分析表明:GmHKT6;2是大豆中的一个新HKT蛋白基因;GmHKT6;2基因在大豆的根、茎及叶中均能表达,150 mmol/L NaCl处理后,该基因在大豆根、茎及叶中的表达被强烈诱导并高效表达。结构域分析结果表明:大豆GmHKT6;2基因拥有10个可能的跨膜结构域(TMD)和阳离子转运蛋白保守结构域,推测其是通过调节相关阳离子的转运来调控大豆的耐盐性。  相似文献   

17.
水稻耐碱突变体ACR78在苏打盐碱胁迫下的离子吸收特性   总被引:3,自引:0,他引:3  
利用盆栽方法,比较研究了盐碱胁迫下水稻耐碱突变体(ACR78)及其野生型植株体内K+、Na+、Ca2+、Mg2+、Fe2+和Zn2+含量的变化.结果表明,盐碱胁迫下,ACR78全株Na+总含量比野生型减少2.9%,显著低于野生型.同时,其K+、Zn2+和Mg2+含量比野生型分别增加18.3%,89.7%和4.9%(P<0.05),全株K+/Na+比值(0.16)显著高于野生型(0.13).从器官水平看,ACR78茎中+>/Na+比值极显著高于野生型,约为野生型的1.4倍.ACR78根和茎中Na+含量显著低于野生型(14.0%和5.9%),其茎中K+含量比野生型增加32.3%,根和叶中无显著性差异.ACR78根和茎中Zn2+含量分别比野生型增加44.2%和202.7%,Mg2+含量在器官中的分配规律与Na+相反.说明ACR78可显著抑制Na+的吸收,并对K+、Zn2+和Mg2+具有较强的选择性吸收能力.  相似文献   

18.
A salt-tolerant line, S24, of spring wheat was compared with a salt-sensitive line, Yecora Rojo, in sand cultures at four different growth stages, i.e. germination, seedling, tillering and booting, under greenhouse conditions. The NaCl treatments used were 0 or 125 mol m−3 in full strength Hoagland's nutrient solution. S24 exceeded Yecora Rojo in biomass or grain yield at the tillering and booting stages, but these lines did not differ at the initial growth stages, i.e. germination and seedling. The growth performance of the two lines at different growth stages was positively related to the pattern of accumulation of cations and anions. The superiority of S24 to Yecora Rojo at the two later growth stages was related to its relatively low accumulation of Na+ or Cl and high accumulation of K+ in leaves. The former line also maintained higher leaf K/Na ratios, Ca/Na ratios, K versus Na selectivities and Ca versus Na selectivities than the latter particularly at the tillering and booting stages. Salt tolerance in spring wheat, in this study, is found to be age-dependent. The booting stage has been found as one of the most appropriate growth stages where maximum differentiation in salt-tolerant and salt-sensitive lines occurred. As is evident from previous studies with spring wheat, in the present study there is a positive correlation between partial exclusion of Na+ or Cl−1 from the tissues and maintenance of high tissue K/Na and Ca/Na ratios, and K versus Na and Ca versus Na selectivities, and salt tolerance of this crop.  相似文献   

19.
赵翔  汪延良  王亚静  王西丽  张骁 《作物学报》2008,34(11):1970-1976
研究了Ca2+ 对NaCl胁迫下蚕豆气孔运动及质膜K+通道的影响。结果表明,100 mmol L-1 NaCl可明显诱导气孔开放,该现象可被10 mmol L-1 CaCl2 显著抑制。为探讨盐胁迫下Ca2+对K+和Na+跨膜运输的调控机制,我们利用膜片钳技术记录全细胞K+ 电流发现,在100 mmol L-1 NaCl胁迫下,加入10 mmol L-1 CaCl2胞外处理,显著抑制质膜K+内向及外向通道电流,这种抑制可被1 mmol L-1 La3+ (Ca2+通道抑制剂)缓解。非盐胁迫下,10 mmol L-1 CaCl2 胞外处理也能显著抑制质膜内向K+通道,但明显激活其外向通道,加入1 mmol L-1 La3+并不能被缓解。用H2O2专一的荧光探针二氯荧光素二乙酸酯(H2DCF-DA)单细胞分析保卫细胞内H2O2含量变化显示,在100 mmol L-1 NaCl盐胁迫下,10 mmol L-1 CaCl2 处理明显诱导H2O2在保卫细胞中积累;100 mmol L-1 NaCl和10 mmol L-1 CaCl2单独处理并不能诱导H2O2积累。推测Ca2+在盐胁迫下可能先诱导H2O2在胞内积累,进而激活质膜Ca2+通道,迅速提高胞内Ca2+浓度以抑制Na+通过质膜K+通道跨膜内流,同时调节Na+外流,两种效应共同作用促使气孔关闭,减少盐胁迫下水分的过度散失。上述结果将为Ca2+调控作物抗盐机制研究提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号