首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme preparations from Drosophila melanogaster flies degraded [14C]malathion to α- and β-malathion monoacids and, hence, were considered to contain malathion carboxylesterase (ME) activity. Although ME- activity was stable during preincubation in the absence of malathion, it decreased dramatically during the course of the reaction, and could not be completely recovered by Sephadex G-25 chromatography. Furthermore, the protein fraction after chromatography still contained 14C, suggesting that the enzyme had become inhibited by a bound, 14C-labeled derivative. Extracts from a resistant (malathion-selected), an intermediate control, and the susceptible Canton S strains of D. melanogaster differed in the lability of ME activity during the reaction. This difference was partly attributed to the production of small amounts of malaoxon (2–8%) by the extracts from the more resistant strains. No consistent strain differences were found when the rate of malathion degradation was measured during the first minute of reaction, either with or without a microsomal oxidase inhibitor (metyrapone) present. These results, together with the cross-resistance of the malathion-selected strain to other insecticides and the lack of a synergistic effect of two carboxylesterase inhibitors (triphenyl phosphate and S,S,S-tributylphosphorotrithioate) suggested that malathion carboxylesterase does not contribute significantly to the observed differences in malathion resistance between strains.  相似文献   

2.
The genetic basis of deltamethrin resistance or sensitivity in two strains of Drosophila melanogaster was studied by means of chromosomal analysis. Eight homozygote combinations of resistant (SR) and sensitive (HS1) strains were constructed by chromosome substitution and were tested using topical bioassay and electrophysiological tests. The analysis of the data showed that resistance to lethal effects was multigenic, with the major factor(s) located on the first (X) and second chromosomes. One significant positive interaction between the two chromosomes was also found. For the resistance to knockdown (measured by time-based topical test), the second chromosome was found to be much more important than the first and third chromosomes. However, analysis of the onset of the deltamethrin-induced electrical activity for each constructed strain suggested that reduced nerve sensitivity (probably associated to the deltamethrin resistance) was linked to both chromosomes X and 2. Similarly, bursts of large excitatory junctional currents (which were observed in sensitive and wild strains following topical application of deltamethrin) were not observed in resistant strains when these two chromosomes originated from the SR strain. A good correlation was found between the latency and LD50 suggesting that the same factors might be involved in the electrophysiological effects and the lethal effects. In our strains, resistance most probably corresponds to reduced nerve sensitivity. Our data are consistent with the location of the sodium channel gene in Drosophila on the chromosome X but clearly demonstrate that this major gene cannot by itself explain target site resistance to deltamethrin.  相似文献   

3.
Neonate larvae of obliquebanded leafroller, Choristoneura rosaceana, from a laboratory colony were exposed to two reduced-risk insecticides, chlorantraniliprole and spinetoram. After nine generations of selection, significant levels of resistance to each insecticide were observed. Biochemical assays were performed on third instars to determine potential resistance mechanisms. Enzyme assays indicated that esterase activity was significantly increased in the chlorantraniliprole-selected colony, whereas mixed-function oxidase levels were elevated in the spinetoram-selected colony as compared to the unselected colony. No difference in glutathione-S-transferase activity was seen in either of the insecticide-selected colonies. These results indicate the potential involvement of esterases and mixed-function oxidases as detoxification mechanisms responsible for resistance to chlorantraniliprole and spinetoram, respectively. Furthermore, the results of this study suggest that chlorantraniliprole and spinetoram are not detoxified by similar mechanisms and could therefore be incorporated into resistance management programs in tree fruit leading to sustainable management of C. rosaceana.  相似文献   

4.
The role of esterases in malathion resistance in Culex tarsalis has been investigated. When larvae of a resistant and a sensitive strain were placed in water containing [14C]malathion, malathion penetrated to give initially similar internal levels. With resistant mosquitoes, after 15 min the internal malathion concentration decreased to low levels while the monoacid degradation products accumulated in the larvae and were excreted into the surrounding water, whereas in susceptible larvae the internal malathion level stayed high and was lethal. It is suggested that the decrease in internal malathion and the resulting resistance were caused by an active malathion carboxylesterase in the resistant strain. A specific assay for malathion carboxylesterase with [14C]malathion showed 55 times more activity in resistant than in susceptible larvae, whereas when general esterase activity was assayed with α-naphthyl acetate only 1.7 times the activity was found. Analyses by starch gel electrophoresis showed a peak of malathion carboxylesterase, 60-fold higher from resistant than from susceptible larvae, in a gel zone which did not stain for general esterase activity. General esterases that did not hydrolyze malathion showed different electrophoretic patterns in the two populations, which are likely due to the nonisogenic character of the strains. These results show that use of a specific assay and the demonstration of degradation of malathion in vivo are essential for assessment of the contribution of esterase activity to the malathion-resistant phenotype in mosquito populations.  相似文献   

5.
The toxicity of several juvenile hormone analogs (JHAs) to susceptible and insecticide-resistant housefly (Musca domestica L.) strains was determined by an assay procedure in which larvae were exposed to residues of JHAs in glass vials. All JHAs tested were toxic and the most active compound, isopropyl 11-methoxy-3, 7, 11-trimethylododeca-2, 4-dienoate, was 100 times as toxic to the susceptible Orlando Regular strain as methyl parathion and 600 times as toxic as DDT.A 5- to 30-fold tolerance to the different JHAs was present in an insecticide resistant strain in which resistance is associated with a high level of NADPH-dependent microsomal oxidase activity controlled by a gene(s) on chromosome II. Cross-resistance was less marked in a strain with a chromosome V high oxidase gene and absent in strains with other resistance mechanisms.The data indicate that cross-resistance to JHAs in insects may occur in certain strains with high levels of oxidative detoxifying activity. Even so, the most active JHA was far more toxic to both susceptible and resistant strains than methyl parathion or DDT.  相似文献   

6.
The genetics and biochemistry of oxidative resistance to diazinon were investigated in a diazinon-resistant strain of the house fly, Musca domestica L. The resistant strain was crossed with a multimarker susceptible strain and substrains containing portions of the resistant strain genome were prepared. Resistance, microsomal oxidase, and cytochrome P-450 spectral characteristics were then compared in the different strains. The major gene for resistance to diazinon is semidominant and is located on chromosome II, 13 crossing over units from the recessive mutant stubby wing. Additional resistance genes occur on chromosome II and on other chromosomes as well. Resistance to diazinon was introduced into a susceptible mutant-marked strain via genetic crossing over. Increases in parathion oxidase, total and P-450-specific N- and O-demethylase activity, and resistant strain type I binding spectrum were introduced along with resistance, indicating genes controlling these parameters and resistance are either identical or closely linked. No increase in activity of cytochrome P-450 itself was introduced into the mutant strain. Additional genes controlling the amount of cytochrome P-450 and several spectral changes characteristic of the resistant strains are apparently controlled by genes located at different loci on chromosome II. Resistance factors on other chromosomes are also present, but were not characterized.  相似文献   

7.
The contact and oral toxicity of methomyl (S-methyl N-[(methylcarbamoyl)oxy] thioacetimidate) was similar for two different strains of European corn borer, Ostrinia nubilalis (Hübner). In each case, third- and fourth-instar larvae were equally susceptible, but fifth-instar insects were considerably more difficult to kill. In vivo and in vitro studies revealed that borers from both strains metabolized methomyl via a mixed-function oxidase system to water-soluble products which could not be cleaved by acid or hydrolytic enzymes. By far, the greatest metabolic activity was localized in fat body tissues of last-instar larvae, and although both strains metabolized methomyl at a similar rate, a large difference was found in the rate of metabolism of methomyl oxime.  相似文献   

8.
Microplate assay technique for estimation of esterase activity in a single insect was used in combination with dose mortality bioassays to detect pyrethroid resistance in three strains of Helicoverpa armigera and to study the frequency of pyrethroid resistant individuals within the population of the same strain at two larval stages, third and fifth instar. The third and fifth instar larvae of the field strains i.e., Nagpur strain and Delhi strain that displayed high degree of resistance towards deltamethrin, had higher esterase activity compared to a susceptible laboratory strain. The frequency distribution of individuals with elevated esterase activity above 1.00 absorbance unit was correlated with the resistance level of the strains. The frequency of resistant individuals in the third instar larvae of Nagpur strain and Delhi strain were 29% and 23%, respectively compared to 4% in the susceptible strain. The resistant individuals in the resistant strains have markedly increased in the fifth instar larvae with a frequency distribution of 63% and 90% in Delhi strain and Nagpur strain, respectively, while only 14% of individuals was found to have elevated esterase activity in the susceptible strain. The results demonstrated the role of esterase in pyrethroid resistance in H. armigera. Microplate assay proved to be a rapid and reliable biochemical technique for monitoring of pyrethroid resistance in H. armigera.  相似文献   

9.
The mechanisms of resistance to the chitin synthesis inhibitor diflubenzuron were investigated in a diflubenzuron-selected strain of the house fly (Musca domestica L.) with > 1000 × resistance, and in an OMS-12-selected strain [O-ethyl O-(2,4-dichlorophenyl)phosphoramidothioate] with 380 × resistance to diflubenzuron. In agreement with the accepted mode of action of diflubenzuron, chitin synthesis was reduced less in larvae of the resistant (R) than of a susceptible (S) strain. Cuticular penetration of diflubenzuron into larvae of the R strains was about half that of the S. Both piperonyl butoxide and sesamex synergized diflubenzuron markedly in the R strains, indicating that mixed-function oxidase enzymes play a major role in resistance. Limited synergism by DEF (S,S,S-tributyl phosphorotrithioate) and diethylmaleate indicated that esterases and glutathione-dependent transferases play a relatively small role in resistance. Larvae of the S and R strains exhibited a similar pattern of in vivo cleavage of 3H- and 14C-labeled diflubenzuron at N1C2 and N1C1 bonds. However, there were marked differences in the amounts of major metabolites produced: R larvae metabolized diflubenzuron at considerably higher rates, resulting in 18-fold lower accumulation of unmetabolized diflubenzuron by comparison with S larvae. Polar metabolites were excreted at a 2-fold higher rate by R larvae. The high levels of resistance to diflubenzuron in R-Diflubenzuron and R-OMS-12 larvae are due to the combined effect of reduced cuticular penetration, increased metabolism, and rapid excretion of the chemical.  相似文献   

10.
House fly (Musca domestica L.) microsomes prepared from larvae, pupae, or adults contain three enzyme system which can metabolize juvenile hormone I: an esterase, an oxidase, and epoxide hydrase. The presence of the oxidase is indicated by the increased metabolism when microsomes are supplemented with NADPH and by the occurrence of additional metabolites tentatively identified as products arising from oxidation of the 6, 7 double bond. Additional evidence of the activity of the oxidase system is the increased metabolism of juvenile hormone I by the NADPH-dependent system from phenobarbital-induced insects, by inhibition of the oxidation by piperonyl butoxide and carbon monoxide, and by the greater metabolism of the hormone by microsomes from insecticide-resistant (high oxidase) strains. In vivo studies of house fly adults treated with 3H-labeled juvenile hormone I reveal a pattern of metabolism similar to that seen during NADPH-supplemented in vitro metabolism. The three enzymes have somewhat different patterns of activity during the larval stage of the house fly, juvenile hormone esterase and epoxide hydrase beginning at a high level of activity in the young larvae while the juvenile hormone oxidase is low at this stage. In the late larval stage all three enzymes show increased activity followed by declines during the pupal stage and further increases in the adult stage. Comparison of in vitro enzyme levels of the house fly, flesh fly (Sarcophaga bullata Parker), and blow fly [Phormia regina (Meigen)] showed that, although the enzymes were present in the latter two species, their activity on a per insect basis was considerably less than that of the house fly.  相似文献   

11.
Resistance to malathion in Anopheles stephensi from Pakistan was measured at intervals during the first week of adult life. LT50 values for homozygous resistant females decreased four-fold during the first 7 days of adulthood. A decrease in resistance with age also occurred in heterozygotes; the LT50 values of males and females fell sevenfold during the first 5 days of adulthood. The sensitivity to malathion of a susceptible strain increased with age. A biochemical basis for the declining resistance levels was investigated. Resistant and susceptible adults were homogenized at intervals during the first week of adulthood and soluble extracts were incubated with [14C]malathion. The rate of malathion metabolism to mono- and dicarboxylic acids was faster in resistant than in susceptible mosquitoes. The rate of malathion metabolism decreased with age in both strains. A decrease in carboxylesterase activity with age in resistant and susceptible mosquitoes is thus responsible for the increasing sensitivity to malathion. Implications for the monitoring of resistance in the field by diagnostic dosages and for the future use of malathion in mosquito control are discussed.  相似文献   

12.
Fourth instar larvae, the progeny from wild-caught Anopheles sacharovi females, were subjected to a number of biochemical tests and the results were compared to those from similar tests on laboratory insecticide resistant and susceptible strains of anopheline and culicine mosquitoes. DDT resistance in An. sacharovi is associated with the ability to rapidly metabolise DDT to DDE. The organophosphorus and carbamate resistance was not associated with quantitative changes in esterases, multifunction oxidases, or glutathione S-transferase. The acetylcholinesterase was less sensitive to malaoxon and propoxur than laboratory susceptible An. albimanus, and plots of inhibition suggest that the population was polymorphic for more than one form of acetylcholinesterase. Metabolism studies on malathion and pirimiphos methyl did not indicate resistance due to increased metabolism. There was no evidence of penetration barriers contributing to resistance to either DDT or malathion, and there was no indication of any resistance to pirimiphos methyl in our tests.  相似文献   

13.
Larvae from two strains of the European corn borer, Ostrinia nubilalis (Hübner), were compared for differences in their tolerance and metabolism of carbaryl (1-naphthyl N-methylcarbamate). The Geneva strain was about twice as susceptible to carbaryl, but both Valley and Geneva borers converted carbaryl to oxidative metabolites at similar rates in vivo and in vitro. Maximum carbaryl-metabolizing activity was present in last-instar larvae, particularly in the fat body and gut tissues. However, the specific activity of gut homogenates was highest in the Geneva strain and the specific activity of fat body was highest in the Valley strain. Other differences in the mixed-function oxidase systems of gut and fat body were also found. The major metabolite in vivo and in vitro was hydroxymethyl carbaryl.  相似文献   

14.
Malathion resistance in Anopheles stephensi from Pakistan was synergized by triphenyl phosphate, primarily a carboxylesterase inhibitor. There was a slight degree of antagonism with piperonyl butoxide. The major metabolite of malathion in larvae of both the resistant and susceptible strains was malathion monocarboxylic acid. Resistant larvae produced about twice as much of this product as the susceptible larvae. This suggests that a qualitative or a quantitative change in a carboxylesterase enzyme may be the basis of malathion resistance in this strain. Analysis of general esterase levels to α- and β-naphthyl acetate showed that there was no quantitative change in the amount of carboxylesterase enzyme present in the resistant strain as compared to the susceptible.  相似文献   

15.
The DDT-resistant housefly strain, Fe, known to resist DDT by biochemical oxidation, is also resistant to carbamate insecticides and has a high in vitro microsomal epoxidase activity. The purpose of this investigation was to determine whether the DDT resistance, associated with chromosome V, is also responsible for the resistance to carbamates and for the high epoxidase levels. Genetic procedures for segregating the R factors were employed using a multimarker insecticide susceptible strain designated acbco. The technique involved backcrossing the F1 hybrid of the resistant and susceptible parents to the susceptible parent. The genotypes with a single R chromosome from the Fc parent were retained for further development as substrains and for toxicological and biochemical studies.These studies revealed that both resistance to the carbamate insecticide, propoxur, and the high in vitro microsomal epoxidation of aldrin were lost during the genetic isolation of the R factors. However, the resistance to DDT, associated with chromosome V, was present in the substrain carrying this chromosome from the Fc parent. All of the substrains were induced five- to seven-fold, by feeding phenobarbital at 1% in the diet for 3 days.Additional substrains synthesized from the substrains carrying chromosomes II and V or III and V from the Fc parent did not possess sufficient propoxur resistance or aldrin epoxidase activity to account for that present in the R parent.The interpretation of these rseults is that neither the carbamate resistance nor the microsomal epoxidase of the Fc strain is due to the factor which oxidizes DDT. Furthermore, the factor responsible for the high microsomal epoxidase activity is not due to a single chromosome such as chromosome II which is the case in other housefly strains with high oxidase activities.  相似文献   

16.
Of six juvenile hormone analogs of the alkyl 3,7,11-trimethyl-2,4-dodecadienate type, only the isopropyl ester was strongly morphogenic in the house fly, Musca domestica L. In vitro assays revealed that house fly microsomes contain B-esterases as well as oxidases which metabolize such analogs. However, these esterases did not hydrolyze the isopropyl ester, ZR-515. Enzymes prepared from larvae, pupae, and adults were all active and there was evidence that in the late larval stage the esterase activity was cyclic, showing a minimum in the early third instar and a maximum a few hours later. When microsomes from two susceptible and two resistant house fly strains were compared for metabolic activity against the juvenile hormone analogs, those from the resistant strains were 1.3 to 20 × higher in oxidase activity but there was no difference in esterase activity. The oxidative metabolism of two analogs ZR-515 and 512 was greatly enhanced when the flies were induced with phenobarbital but there was no enhancement in metabolism of three of the remaining analogs and only a slight enhancement of a fourth. It is concluded that the insecticidal action of ZR-515 is largely due to its stability in the presence of the house fly esterases.  相似文献   

17.
为明确棉铃虫Helicoverpa armigera(Hübner)对苏云金芽胞杆菌Bacillus thuringiensis(Bt)Cry1Ac毒蛋白抗性的稳定性及其适合度变化,利用生物测定的方法研究了Cry1Ac抗性品系棉铃虫转到正常饲料饲养后的抗性衰退及再次筛选后抗性的恢复情况,并比较了敏感、抗性和抗性衰退后各品系间的适合度差异。在失去选择压的情况下,高抗品系棉铃虫对Cry1Ac的抗性迅速衰退,经过4代后抗性水平由最初的3626.67倍下降到1436.67倍;到第12代时抗性水平已低于10倍,随后品系保持较稳定的低抗水平;当重新进行抗性再筛选时,其抗性水平可快速恢复,抗性倍数快速回升,5代后恢复到1123.33倍。与敏感品系相比,高抗棉铃虫品系的适合度明显降低,相对适合度仅为0.33,但转到正常饲料连续饲养14代后,棉铃虫适合度明显上升,相对适合度为0.87,主要表现为卵孵化率和幼虫存活率等显著提高。  相似文献   

18.
The aim of this work was to study the absorption, biotransformation, and excretion of malathion (14C-methoxy) and its metabolites in larval stages of the toad Bufo arenarum (Hensel). Also, changes in malathion metabolization by the action of the exogenous polyamine spermidine were studied. Malathion clearance from the media was uniexponential, and spermidine reduced the uptake in the larvae, causing an increase in the apparent half-life of the toxicant. Concomitant with this effect, spermidine increased the level of induction of mixed-function oxidases due to malathion and caused a progressively higher malaoxon/malathion ratio. As a consequence of the higher conversion to the active metabolite malaoxon, spermidine also provoked a significant enhancement in the inhibitory effect of Malathion on acetylcholinesterase activity. [methoxy14C]malathion metabolites, such as carboxylesterase and glutathione S-transferase products, were detected in the toad larvae and in the media. The excreted products of carboxylesterase activity were about 70% of the total radioactivity, and the glutathione S-transferase products (methyl glutathione) were 20–30% of the total radioactivity. No significant variations in the levels of excreted products due to the action of exogenous spermidine were detected. Malathion inhibited carboxylesterase activity, independent of the presence of spermidine in the media. In turn, glutathione S-transferase activity was induced by spermidine, but was not affected by the exposure to low concentrations of malathion for 48 h. We conclude that the presence of spermidine in the medium modifies malathion toxicokinetics, increasing its toxicity in B. arenarum larvae.  相似文献   

19.
The DDT-resistant Fc strain of house flies, Musca domestica L., was analyzed genetically by means of crosses with a susceptible strain carrying a recessive mutant marker for each of the five autosomes. Progeny (substrains) retaining combinations of two, three, or four chromosomes of the resistant parent were selected for measurement of their microsomal aldrin expoidase activity and its correlation with chromosomal makeup and level of resistance to DDT and propoxur. There was no evidence that microsomal epoxidation of aldrin or resistance to propoxur, is associated with chromosome V in the Fc strain as has been reported. Instead, the well-known oxidase regulating factor on chromosome II was of major importance in the strain's microsomal oxidation of aldrin. There was also evidence, though not conclusive, that a factor on chromosome I has an influence on the oxidative metabolism of insecticides in this strain, possibly through an interaction with the factor on chromosome II. The reasons for the conflicting reports on the genetic control of microsomal oxidation in the Fc strain are discussed.  相似文献   

20.
The in vivo and in vitro metabolism of [14C]malathion was studied in susceptible (LS) and malathion resistant (RM) strains of the sheep blowfly, Lucilia cuprina (Wiedemann). No difference was found between strains in the penetration, excretion, storage, or inhibitory potency of the insecticide. However, RM degraded malathion to its α- and β-monocarboxylic acid metabolites more rapidly than LS, both in vivo and in vitro. This enhanced degradation of [14C]malathion occurred in vitro in both mitochondrial and microsomal fractions of resistant flies. Kinetic analysis revealed that these fractions degraded malathion by discrete mechanisms. The enzymes from the mitochondria of both strains had the same Km, whereas the microsomal enzyme from the RM strain had a fivefold higher Km than that from the LS strain. Studies of esterase activities and the effect of enzyme inhibitors showed that both the mitochondrial and microsomal resistance mechanisms were the result of enhanced carboxylesterase activity. It was concluded that increased carboxylesterase detoxification of malathion adequately explained the high level of malathion resistance in RM if rate-limiting factors such as cuticular penetration were taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号