首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prochloraz (N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]-imidazole-1-carboxamide), a recently developed agricultural fungicide, is a potent inducer of microsomal enzymes. Rats fed 7 days with a prochloraz-contaminated diet (2500 ppm) showed an increase in hepatic cytochrome P-450, cytochrome b5, and microsomal protein level; aniline hydroxylase, 7-ethoxycoumarin dealkylase, 7-ethoxyresorufin dealkylase, NADPH-cytochrome c reductase, and epoxide hydrolase were significantly induced. At a lower dose (100 ppm), only an increase in cytochrome P-450 and 7-ethoxyresorufin dealkylase was noticed. As shown with aniline hydroxylase and 7-ethoxycoumarin dealkylase, prochloraz is also a potent inhibitor of drug-metabolizing enzymes. The interaction of prochloraz with hepatic microsomal fraction from rat liver was also studied. Prochloraz binds to oxidized cytochrome P-450 to produce a type II spectral change; the compound also binds to reduced cytochrome P-450. The binding of some ligands (7-ethoxycoumarin, n-octylamine, aniline, and imidazole) to oxidized cytochrome P-450 was determined after induction by prochloraz. Japanese quails (Coturnix coturnix) fed 7 days with a prochloraz-contaminated diet (2000 ppm) showed a dramatic increase in liver weight (2.5-fold) and both hepatic and duodenal cytochrome P-450 (9- and 12-fold, respectively).  相似文献   

2.
Various detoxifying enzymes, including microsomal oxidases, glutathione S-transferases, esterases, epoxide hydrolase, and DDT-dehydrochlorinase, were assayed in adult worker bees (Apis mellifera L.) using midguts as the enzyme source. A cell-free system was used for all enzyme assays, except that microsomal oxidases required intact midgut because of the inhibitor encountered. Midgut microsomal preparations contained mainly cytochrome P-420, the inactive form of cytochrome P-450, which may explain the low microsomal oxidase activity in microsomes. All enzymes studied were active, suggesting that the high susceptibility of honey bees to insecticides is not due to low detoxication capacity. Sublethal exposure of honey bees to various insecticides had no effect on these enzyme activities, with the exception of permethrin which significantly stimulated the glutathione S-transferase, and malathion, which significantly inhibited the α-naphthylacetate esterase and carboxylesterase.  相似文献   

3.
A strain of the fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from corn in Citra, Florida, showed high resistance to carbaryl (562-fold) and methyl parathion (354-fold). Biochemical studies revealed that various detoxification enzyme activities were higher in the field strain than in the susceptible strain. In larval midguts, activities of microsomal oxidases (epoxidases, hydroxylase, sulfoxidase, N-demethylase, and O-demethylase) and hydrolases (general esterase, carboxylesterase, β-glucosidase) were 1.2- to 1.9-fold higher in the field strain than in the susceptible strain. In larval fat bodies, various activities of microsomal oxidases (epoxidases, hydroxylase, N-demethylase, O-demethylases, and S-demethylase), glutathione S-transferases (CDNB, DCNB, and p-nitrophenyl acetate conjugation), hydrolases (general esterase, carboxylesterase, β-glucosidase, and carboxylamidase) and reductases (juglone reductase and cytochrome c reductase) were 1.3- to 7.7-fold higher in the field strain than in the susceptible strain. Cytochrome P450 level was 2.5-fold higher in the field strain than in the susceptible strain. In adult abdomens, their detoxification enzyme activities were generally lower than those in larval midguts or fat bodies; this is especially true when microsomal oxidases are considered. However, activities of microsomal oxidases (S-demethylase), hydrolases (general esterase and permethrin esterase) and reductases (juglone reductase and cytochrome c reductase) were 1.5- to 3.0-fold higher in the field strain than in the susceptible strain. Levels of cytochrome P450 and cytochrome b5 were 2.1 and 1.9-fold higher, respectively, in the field strain than in the susceptible strain. In addition, acetylcholinesterase from the field strain was 2- to 85-fold less sensitive than that from the susceptible strain to inhibition by carbamates (carbaryl, propoxur, carbofuran, bendiocarb, thiodicarb) and organophosphates (methyl paraoxon, paraoxon, dichlorvos), insensitivity being highest toward carbaryl. Kinetics studies showed that the apparent Km value for acetylcholinesterase from the field strain was 56% of that from the susceptible strain. The results indicated that the insecticide resistance observed in the field strain was due to multiple resistance mechanisms, including increased detoxification of these insecticides by microsomal oxidases, glutathione S-transferases, hydrolases and reductases, and target site insensitivity such as insensitive acetylcholinesterase. Resistance appeared to be correlated better with detoxification enzyme activities in larval fat bodies than in larval midguts, suggesting that the larval fat body is an ideal tissue source for comparing detoxification capability between insecticide-susceptible and -resistant insects.  相似文献   

4.
Only about 60% of the total relative gravitational force conventionally used to sediment microsomes is needed to prepare highly active microsomes from the midgut tissues of an insect larva. A rapid preliminary centrifugation for 2 min at 39,000gmax effectively removed contaminating microorganisms, tissue debris, nuclei, and mitochondria. The supernatant was recentrifuged for 20 min to 210,000g to sediment the microsomes. There were no losses of microsomal oxidase activities or degradation of cytochrome P-450 to the inactive form (P-420) resulting from the application of the higher gravitational force. Incorporation of 1 mM EDTA in the buffer and washing the microsomes resulted in an improved yield of the cytochrome compared to that in microsomes prepared in sucrose. Yields of microsomal protein, cytochrome P-450, and NADPH-cytochrome c reductase in the rapidly isolated microsomes were as good as those in conventionally prepared microsomes. The apparent kinetic characteristics of several microsomal oxidation activities and optical difference spectra of Types 1 and 2 ligands were identical in the rapidly and conventionally prepared microsomes. The morphological appearance of the microsomes was examined by electron microscopy. Microsomal pellets prepared by either method were indistinguishable. The rapid procedure saves significant time in microsome preparation and yields microsomal oxidase activities as good or slightly better than those prepared by usual centrifuged procedures.  相似文献   

5.
The inductive effect of six triazine herbicides on a variety of detoxification enzymes was investigated in fall armyworm (Spodoptera frugiperda) larvae maintained on an artificial diet. Dietary atrazine induced nine microsomal oxidase activities ranging from 1.3- to 21.6-fold, 12 glutathione S-transferase activities ranging from 1.3- to 4.2-fold, four hydrolase activities ranging from 1.3- to 2.9-fold, and two reductase activities ranging from 1.5- to 5.1-fold, depending on the enzyme assayed and tissue source (midgut vs. fat body) used. Simazine, cyanazine, ametryn, tebutryn, and terbuthylazine also induced these detoxification enzymes. The induction of microsomal oxidase (aldrin epoxidase) ranged from 1.2- to 11-fold, glutathione S-transferase (CDNB) ranged from 1.3- to 4-fold, and general esterase ranged from 1.4- to 4.1-fold, depending on the tissue source examined. In general, fat bodies were more inducible than midguts with respect to these detoxification enzymes, especially the microsomal oxidases. The induction by atrazine was associated with decreased toxicity of carbaryl, permethrin and indoxacarb, but increased toxicity of methyl parathion, phorate, and trichlorfon.  相似文献   

6.
A Ca-ATPase highly sensitive to DDT has been found in peripheral nerves of lobster, Homarus americanus. The observed I50 for this Ca-ATPase toward DDT is on the order of 10?9M and has a low temperature quotien. The ATPase seems to work over a wide range of ATP concentrations. It is stimulated by Ca2+ (optimum 0.1 mM) and shows sensitivity to Na+ (optimum 20 mM) and K+ (optimum 20 mM) ions. The fact that it is highly sensitive to ruthenium red (I50 = 10 μM) suggests that the enzyme is a Ca-ATPase and not a Mg-ATPase. Furthermore the enzyme is not a CaMg-ATPase, since the presence of Mg2+ along with Ca2+ ion is not required for its activity. DDT is found to inhibit the process of Ca2+ binding in the axonic membrane only in the presence of ATP. The evidence suggests the important role of the Ca-ATPase in regulating Ca2+ concentrations in the membrane. The possible significance of DDT inhibition of the ATPase is discussed.  相似文献   

7.
Larvae of the southern armyworm, Spodoptera eridania (Cramer), grew well in the 15–30°C temperature range. Pupae survived poorly at 15°C but moths emerged from 85% of the pupae at 30°C. The time for development was prolonged at 15°C and larvae grew significantly bigger than at 30°C. Cytochrome P-450 content, cytochrome P-450 reductase, p-chloro N-methylaniline N-demethylation, methoxyresorufin 0-demethylation, and aldrin epoxidation activities were higher at 15°C than at 30°C. All cytochrome P-450 activities were more inducible by dietary pentamethylbenzene at 30°C than at 15°C. High cytochrome P-450-catalyzed activities were associated with increases in microsomal protein rather than with changes in membrane lipid or phospholipid content. Phosphatidylcholine was the major midgut membrane phospholipid. There was only a tendency towards increased unsaturation of the phospholipid fatty acyl moieties and lowered membrane phase transition temperature in cold-adapted larvae. Acute oral carbaryl toxicity was generally inversely correlated with cytochrome P-450 catalyzed activities. Carbaryl toxicity was decreased about 10-fold by pentamethylbenzene induction and about 3-fold by the lower acclimatization temperature.  相似文献   

8.
The effects of chlordecone treatment on the hepatic microsomal monooxygenase system of male rats were investigated. Chlordecone increased the microsomal content of cytochrome P-450, NADPH-cytochrome P-450 (c) reductase and, to a lesser extent, cytochrome b5 in a time- and dose-dependent manner. The content of NADH-cytochrome b5 (c) reductase was reduced. The turnover of seven substrates was studied in detail and, with the exception of aniline, was found to be increased between 1.3- and 2.2-fold. The apparent Km's for these substrates were increased 2.1- to 16.7-fold. In addition, zoxazolamine paralysis time was reduced as a result of chlordecone treatment. These kinetic changes are explained on the basis of alterations in the cytochrome P-450 pool together with residual chlordecone acting as an inhibitor of substrate turnover. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein pattern of microsomes isolated from chlordecone-treated rats more closely resembled that of microsomes isolated from untreated rats than that of microsomes isolated following phenobarbital or 3-methylcholanthrene treatment.  相似文献   

9.
l-[U-14C]sucrose accumulation by phloem sieve tube members (PSTM) of wheat (Triticum aestivum L. ‘Holley’) and sorghum (Sorghum bicolor L. ‘G522 DR’) was inhibited by the nonpermeant sulfhydryl inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), and this inhibition was reversed by the permeant sulfhydryl protectants dithiothreitol (DTT) and dithioerythritol (DTE). S-Ethyl dipropylthiocarbamate (EPTC) (≤0.1 mM) did not inhibit [14C]sucrose accumulation by wheat or sorghum PSTM. N-N-Diallyl-2-chloroacetamide (CDAA) (1 mM) inhibited [14C]sucrose accumulation by sorghum but not by wheat PSTM. The inhibition of [14C]sucrose accumulation in sorghum PSTM by the membrane permeant CDAA was reversed by DTT. Sorghum growth was inhibited by <1 μM CDAA. Membrane permeant 2-chloroallyl diethyldithiocarbamate (CDEC) (0.1 mM) inhibited [14C]sucrose accumulation by PSTM of sorghum but not wheat. The inhibition of sucrose accumulation in sorghum PSTM by 0.1 mM CDEC was reversed by DDT.  相似文献   

10.
Induction of the microsomal oxidase system by dietary phenobarbital and β-naphthoflavone was examined in three blowflies, Phormia regina (Mg.), Lucilia illustris (Mg.), and Eucalliphora lilica (Walk.). Responses were similar in adults and larvae of all species. Phenobarbital increased cytochrome P-450 levels up to 9-fold and aldrin epoxidase up to 138-fold. Increases in cytochrome P-450 and aldrin epoxidase caused by β-naphthoflavone were minor relative to those produced by phenobarbital. In toxicity experiments with carbaryl and propoxur tolerance was associated with the amount of microsomal oxidase activity. Using piperonyl butoxide to synergize carbaryl and propoxur there was no clear indication for the use of either the synergist ratio or synergist difference as an indicator of microsomal oxidase activity.  相似文献   

11.
The metabolism of R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene] by rat hepatocytes has been analyzed and compared with that of juvenile hormone I [methyl-(E,E)-cis-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate] under identical conditions. The metabolism of R-20458 is characterized by the predominance of NADPH-dependent cytochrome P-450 and epoxide hydrolase reactions; whereas, JH I is metabolized mainly by carboxylesterase, epoxide hydrolase, and glutathione S-transferases. The metabolites of R-20458 have been shown to correspond to (E)-6,7-epoxy-1-(4-hydroxyethylphenoxy)-3,7-dimethyl-2-octene; (E)-6,7-epoxy-1-(4-acetylphenoxy)-3,7-dimethyl-2-octene; (E)-6,7-dihydroxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene; and, (E)-6,7-dihydroxy-1-(4-acetylphenoxy)-3,7-dimethyl-2-octene. The production of the α-hydroxyethyl, p-acetylphenoxy, and acetylphenoxy-6,7-diol metabolites is markedly inhibited by SKF 525-A. No dramatic effects are produced by diethylmaleate and 1,2-epoxy-3,3,3-trichloropropane.  相似文献   

12.
This study presents evidence for the dehydrogenation of lindane by a hepatic microsomal mixed-function oxidase system. Preliminary investigation established that the incubation of lindane with rat liver homogenates produces a chlorinated, nonpolar compound identified as hexachlorocyclohexene. Differential centrifugation resulted in the sedimentation of most of the dehydrogenase activity in the microsomal fraction. Optimum in vitro assay conditions were established and it was found that the dehydrogenase system required molecular oxygen and reduced pyridine nucleotide coenzyme for maximum activity. Inhibition by SKF 525-A and CO suggested that the enzyme was cytochrome P-450 dependent. Lack of inhibition by cyanide indicated that the cytochrome b5 desaturase system was probably not involved. Pretreatment of rats with DDT, which stimulates lindane metabolism, also induced significantly higher dehydrogenase activity. Both the in vivo and in vitro metabolism of hexachlorocyclohexene produced previously identified lindane metabolites. The existence of a cytochrome P-450 dependent mixed-function oxidase which catalyzes the dehydrogenation of lindane has not previously been reported and may be of importance in the metabolism of other xenobiotics.  相似文献   

13.
Development and phenobarbital (PB) induction of microsomal cytochrome P-450, cytochrome P-450 reductase, two epoxidation, and two O-demethylation activities were examined in chronologically timed populations of insecticide-susceptible (NAIDM) and -resistant (Rutgers) house flies. Measurements of these enzymes started with the pharate adult stage and ended 5 days following eclosion. Untreated insects of both strains had comparable reductase levels, whereas cytochrome P-450 and associated monooxygenase activities were 1.5-fold or more higher in Rutgers. Maximum induction, as well as toxicity, occurred at a lower PB concentration in NAIDM than Rutgers. The drug caused consistently higher increases in enzymes and activities within 12 hr of starting treatment in both strains. When PB was withdrawn from treated flies (both strains) 48 hr after treatment began, specific activities (product min?1 mg protein?1) in all enzymes returned to control values in 24 hr while metabolic capacity (product min?1 insect?1) achieved control values within 48 hr. The changes in turnover numbers (pmol product min?1 pmol P-450?1), in conjunction with the differences in the monooxygenation of the four substrates, suggest that PB treatment induced both a quantitative and qualitative change in NAIDM monooxygenation but only a quantitative change in Rutgers monooxygenation.  相似文献   

14.
A rat hepatocyte suspension effectively epoxidized aldrin to dieldrin with a Vmax of 7.19 mol/mol P-450/min and a Km of 9.27 μM. Viability and metabolic activity were stable for 6 hr after isolation when cells were maintained at room temperature (20°C) with the gentle introduction of O2CO2 onto the surface of the suspension. The cytochrome P-450 content of the suspension was 303 pmol/106 cells. Primary maintenance culture of the cells also epoxidized aldrin. During culture for 3 days, metabolic activity decreased slowly day by day. Metabolic activity of microsomal fraction from rat liver was also examined. Microsomes epoxidized aldrin with a Vmax of 5.11 mol/mol P-450/min and a Km of 1.64 μM. Significant loss of some subspecies of cytochrome P-450 during fractionation of liver homogenate was indicated.  相似文献   

15.
American cockroaches injected with sublethal doses of DDT (0.75 μg/roach) at 5-day intervals showed a 40% reduction in oligomycin-sensitive Mg2+ATPase from muscle homogenates, and a 23% reduction of Na+-K+ATPase from nerve cords. Thus, the maximum effect measured occurred with the same enzyme and tissue as determined from in vitro studies. The metabolite, DDE, used at 15 μg per roach, gave no significant change in activity of the ATPase system following injection. In contrast, high single doses of DDT (7.5 μg/roach) and 100 μg DDE and dicofol per roach caused over 30% increase in oligomycin-sensitive Mg2+ATPase of muscle and a 10–15% increase in Na+-K+ATPase of nerve cords measured 24 and 48 hr later. While a similar response was observed for Mg2+ATPase activities in cockroaches that were immobilized, the increase in enzyme activities were much greater than that caused by the pesticides.  相似文献   

16.
DDT inhibits the ATPase activity of the intact eel electroplaque. At a concentration of 10?5M, DDT inhibited 46% of the total ATPase activity, and 10?4M DDT inhibited 62% of the total ATPase activity and 62% of the ouabain-sensitive ATPase activity. The latter concentration of DDT reduced the rate of Na efflux from intact electroplaques and slowed the rate of recovery of the membrane potential following a large depolarization produced by carbamylcholine application. Repetitive direct stimulation of the innervated membrane at 10 Hz during the application of 10?4M DDT produced a significant irreversible depolarization. Ouabain, 10?4M, produced similar effects. The possible role of the inhibition of active NaK transport in producing the symptoms of DDT poisoning is discussed.  相似文献   

17.
Studies were conducted to assess the contribution of the hepatic microsomal mixed function oxidase system to a 7.2-fold difference in susceptibility to the lethal effects of endrin between endrin-resistant and -susceptible pine voles, Microtus pinetorum. Evaluations of microsomal enzyme systems were conducted for basal and endrin-treated pine voles of both strains. The microsomal activity of ICR white mice was investigated to provide a species comparison. Maximal microsomal mixed function oxidase activities were determined in in vitro incubations for the model substrates ethylmorphine, aniline, and benzo(a)pyrene. Vmax values were estimated for the rate of disappearance of benzo(a)pyrene in in vitro incubations. No significant strain differences in basal microsomal enzyme activity were found for the model substrates investigated, although activity was invariably higher in the resistant strain. The concentration of cytochrome P-450 was significantly higher in the resistant vole though actually less than 20% different. The occurrence of significant strain differences in the levels of microsomal enzyme activity induced by endrin were rare. Significant endrin treatment effects on the levels of microsomal enzyme activity for the pine vole were observed but the degree and direction of change depended on the substrate used. A marked species difference in microsomal mixed function oxidase activity was noted between pine voles and white mice. This was particularly evident for endrin-treated animals. The microsomal activity of endrin-treated white mice was greatly induced relative to basal levels. The degree of induction depended on the substrate used. The small strain differences in microsomal enzyme activity for the systems investigated were judged to be insufficient to explain the strain difference in susceptibility to endrin.  相似文献   

18.
Resistance to 4,4′-dichlorodiphenyltrichloroethane (DDT) in the 91-R strain of Drosophila melanogaster is extremely high compared to the susceptible Canton-S strain (>1500 times). In addition to enhanced oxidative detoxification, the 91-R strain also has a reduced rate of DDT penetration, increased levels of reductive and conjugative metabolism, and substantially more excretion than the Canton-S strain. Contact penetration of DDT was ∼30% less with 91-R flies, which also had significantly more cuticular hydrocarbons and a thicker, more laminated cuticle compared to Canton-S flies, possibly resulting in penetration differences. DDT was metabolized ∼1.6-fold more extensively by 91-R than Canton-S flies, resulting in dichlorodiphenyldichloroethane (DDD), two unidentified metabolites and polar conjugates being formed in significantly greater amounts. 91-R flies also excreted ∼4-fold more DDT and metabolites than Canton-S flies. Verapamil pretreatment reduced the LD50 value for 91-R flies topically dosed with DDT by a factor of 10-fold, indicating that the increased excretion may involve, in part, ATP-binding cassette (ABC) transporters. In summary, DDT resistance in 91-R is polyfactorial and includes reduced penetration, increased detoxification and direct excretion.  相似文献   

19.
An insect chitin synthetase (CS) is readily assayed using the microsomal fraction (~0.5 mg protein) from an homogenate of Tribolium castaneum larvae. This enzyme preparation is incubated at 22°C with uridine 5′-diphospho-N-acetyl[3H]glucosamine in 355 μl of 25 mM Tris-HCl buffer containing 10 mM MgCl2, 17 mM N-acetylglucosamine, and 1 mM dithiothreitol. Other divalent cations and amino sugars are less effective activators or are inhibitory. T. castaneum CS is strongly inhibited by polyoxin D and uridine 5′-diphosphate. These activation and inhibition properties of Tribolium castaneum gut CS are similar to those of fungal CS. The polymerization product formed by the Tribolium enzyme is stable in alkali but hydrolyzed by chitinase. Enzymes of Tribolium confusum, Tribolium brevicornis, Tenebrio molitor, and Galleria mellonella are also active under the same conditions. These enzymes are from the gut and probably from the peritrophic membrane. Integumental CS activity is not detected under the indicated assay conditions.  相似文献   

20.
The antihemolytic actions of DDT and eight analogs were examined with human erythrocytes. Apparent aqueous concentrations to produce 60% of control hemolysis ranged from 3.7 × 10?4 to 2.4 × 10?6M, with DDT being one of the least active. No correlation was found between antihemolytic potency and neurotoxicity, and it was concluded that the findings did not illuminate the toxic or neural actions of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号