首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented that corn (maize) and sorghum starch granules have channels that connect a central cavity to the external environment. A mutant sorghum starch with numerous, large surface pores was treated with a methanolic solution of merbromin and sectioned. Light, fluorescence, and compositional backscattering electron microscopy revealed channels connecting an internal cavity to the external surface in most granules. Cavities and channels could also be seen in whole corn and sorghum starch granules treated with merbromin in methanol and viewed by fluorescence microscopy. Treatment of sorghum starch granules with an aqueous solution of merbromin revealed that the molecule penetrated the granule matrix under even slightly swelling conditions. Light microscopy showed cavities in unstained, whole, dry corn and sorghum starch granules mounted in immersion oil.  相似文献   

2.
Commercial corn starch, treated with stearoyl chloride in carbon tetrachloride and triethylamine, is surface-derivatized without noticeable swelling. Granules that are reacted with chloroacetic acid under similar conditions undergo surface etherification, visibly identified by their color binding with fuchsin. Interestingly, the dye experiment indicates surface-derivatization as well as derivatization of the granule central interior, suggesting reagent penetration to the granule interior through pores and derivatization of a lower density porous center. Esterification of corn starch granules treated with glucoamylase have five times greater esterification than normal corn starch granules. Placed in water, these and palmitoylated granules have a fatty feel to the fingers. Stearoylated corn and amaranth starches showed indications for use as fat replacers in frozen desserts.  相似文献   

3.
Proteins were detected in channels of commercial starches of normal maize, waxy maize, sorghum, and wheat through labeling with a protein‐specific dye and examination using confocal laser scanning microscopy (CLSM). The dye, specifically 3‐(4‐carboxybenzoyl)quinoline‐2‐carboxaldehyde (CBQCA), fluoresces only after it reacts with primary amines in proteins, and CLSM detects fluorescence‐labeled protein distribution in an optical section of a starch granule while it is still in an intact state. Starch granules in thin sections of maize kernels also had channel proteins, indicating that proteins are native to the channels and not artifacts of isolation. Incubation of maize starch with protease (thermolysin) removed channel proteins, showing that channels are open to the external environment. SDS‐PAGE analysis of total protein from gelatinized commercial waxy maize starch revealed two major proteins of about Mr 38,000 and 40,000, both of which disappeared after thermolysin digestion of raw starch. Commercial waxy maize starch granule surface and channel proteins were extracted by SDS‐PAGE sample buffer without gelatinization of the granules. The major Mr 40,000 band was identified by MALDI‐TOF‐MS and N‐terminal sequence analysis as brittle‐1 (bt1) protein.  相似文献   

4.
Six methods were investigated for determining the relative average numbers of channels per granule in populations of starch granules. The first method involved digestion of raw starch granules with amyloglucosidase. There were differences in the rates of digestion of starch of the same mutation in two different inbred‐line backgrounds, but we concluded that a better method was needed. Three methods involved measuring either all channel proteins or one specific protein. Extraction of granules using 70% 2‐propanol containing 1% 2‐mercaptoethanol (ME) was successful in removing the majority of external surface proteins (<31 kDa). Further extraction of starch granules using 0.1% SDS containing 0.2% ME, pH 8, removed channel proteins without extracting matrix proteins. By measuring SDS‐PAGE band intensities of protein clusters at 31–97.4 kDa or a marker protein at ≈42 kDa, methods to quantify relative average degrees of channelization (RADC) in different maize backgrounds were developed. Using either method, Oh43 had the highest RADC and B73 had the lowest RADC among the inbred lines examined. Another method involves extraction of total proteins using 2% SDS containing 0.2% ME from granules with the majority of surface proteins removed. The extract is subjected to SDS‐PAGE and Western blotting, followed by location and quantification of the actin band using antibodies to maize pollen actin. These four methods give somewhat different results for six inbred lines of corn with a relatively narrow range of RADC. In an attempt to relate them to the actual number of observed pores (channel openings to the surface), granules were treated with α‐amylase to enlarge the pores, with and without prior treatment with a protease. We concluded that this treatment revealed something about the nature of the granules and the action of α‐amylase on them, but it was not an indication of the number of channels present. The outcome of this research provides evidence that the number of channels in corn starch granules varies with the genetic makeup of the parent plant. We concluded that measuring granule actin is the preferred method.  相似文献   

5.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

6.
碾轧时间和频率对玉米淀粉机械力化学效应的影响   总被引:1,自引:1,他引:0  
为了研究碾轧对玉米淀粉机械力化学效应的影响,该研究以玉米淀粉为原料,采用扫描电镜、偏光显微镜、激光共聚焦显微镜、X-射线衍射、傅立叶变换红外光谱仪、差示扫描量热仪、快速黏度分析仪等手段来研究碾轧处理时间和转速对样品的表面形貌、粒度分布、结晶结构、糊化特性和热特性等结构和性质的影响。结果表明,在频率为20 Hz条件下,碾轧处理3~9 h时,碾轧对淀粉结晶结构破坏作用较弱,主要是对颗粒的无定型区产生了破坏作用,破坏了无定型区的双螺旋结构,中央腔变大,孔道模糊。碾轧处理3~6 h时,淀粉颗粒形状发生不规则变化,粒径也发生了相应的变化,热焓值下降,而结晶度下降不显著。在碾轧处理9 h时,球状凸起变大,水溶指数、膨胀度、透光率、峰值黏度和热焓值都有所减小,而淀粉乳稳定性增强。碾轧处理12~24 h时,淀粉颗粒表面球状凸起变的不明显,淀粉颗粒结晶区内部双螺旋结构破坏,孔道增多变粗,粒径增大,热焓值下降。总之,频率为20 Hz时的碾轧处理对淀粉颗粒的无定形区、结晶区产生不同程度的机械力化学作用,导致玉米淀粉颗粒内部依次发生了受力、聚集和团聚效应。而频率为30 Hz时,由于剪切力更强,碾轧处理对淀粉结构和性质的影响更为显著。  相似文献   

7.
To observe granular reaction patterns within modified starch granules, starch derivatives were converted to thallium(I) salts and viewed by scanning electron microscopy compositional backscattered electron imaging. Observation of phosphorylated potato and sorghum starches and a hydroxypropyl analog of waxy maize starch revealed that granular patterns of reaction were influenced by both starch and reagent types. In waxy maize and sorghum starches, flow of reagent into the granule matrix occurred from channels (laterally) and cavities (from the inside outward). In potato starch granules, which do not possess channels, reagent diffused inward through exterior granule surfaces. Phosphoryl chloride (highly reactive) reacted to a large extent at granule surfaces, while the propylene oxide analog (less reactive) appeared to diffuse into the granule matrix prior to reacting.  相似文献   

8.
Dry waxy wheat starch granules were heat‐treated at 120°C for 5 hr, and then shaken vigorously in a biphasic system of oil and water. Non‐heat‐ treated starch remained in the aqueous phase, whereas the heat‐treated starch granules showed a strong oil‐binding ability that was lost by trypsin treatment. This result showed that the starch granule surface protein changed from hydrophilic to hydrophobic due to the heat treatment. The presence of starch granule surface protein was ascertained by staining with fluorescamine and fluorescence microscopic observation. Heat‐treated waxy wheat starch granules were incubated with a 25% KI/10% I2 (w/v) solution, which produced “ghosts” (exterior and interior) structures. The exteriors stained red‐brown, whereas the interiors stained black‐brown. Sonication (20 kHz for 255 sec) followed by centrifugation separated the structures, which were then shaken vigorously in an oil and water system. Only the exterior ghosts exhibited a remarkable emulsification property, which disappeared after trypsin treatment. The ghosts from unheated control granules did not show emulsification. The presence of protein in the exterior ghost fraction was further substantiated by fluorescamine treatment. No protein was detectable in the interior fraction with this dye. From these results, we suggest that the ghost fraction of the waxy wheat starch contained the starch granule surface protein that was made hydrophobic by heat treatment. Also, the nature of the induced emulsification property of the exterior fraction (ghosts) and the oil‐binding ability of the heat‐treated waxy wheat starch granules coincided. Both were due to the hydrophobic nature of the same starch granule surface protein, which showed that the ghosts were the swollen form of the outer region of the waxy starch granule.  相似文献   

9.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

10.
Barley grain was divided into eight fractions from the surface layer to the center with a machine used to polish brewers' rice. Small‐, medium‐, and large‐granule starches were isolated from classified barley flour, and their physicochemical properties were investigated. The starch granules were oval to round with a median size of 2 μm for small, 10 μm for medium, and 12–19 μm for large granules. From the surface layer to the center, both the median sizes and the ratio of large granules decreased, and the ratio of medium‐ and small‐granules increased. The starches had A‐type X‐ray diffraction patterns typical of cereal starches. The moisture sorption showed a negative correlation to the granule size. The gelatinization temperatures of starch granules in each layer were approximately the same, but the enthalpies decreased in the order of large, medium, and small granules.  相似文献   

11.
Wheat has great potential to make inroads into starch markets with the advent of partial waxy and waxy starches of diverse composition and properties. The majority of isolated starch utilized in food applications is chemically modified to improve starch properties according to the intended use. Therefore, it is critical to understand factors that affect wheat starch reactivity. This work investigated the relative reactivities of normal, partial waxy, and waxy wheat starches and their respective A‐ and B‐type starch granule fractions. Native starch isolated from four closely related soft wheat lines (normal, partial waxy, and full waxy) was modified through 1) substitution (propylene oxide analog) and 2) cross‐linking (phosphorus oxychloride) reactions to generate both types of modified starch products for each wheat line. Characterization of the unmodified starch fractions confirmed compositional differences among the cultivars and their respective granule types. In cross‐linking reactions, B‐type granules were slightly more reacted than A‐type granules for all cultivars, while the waxy starch generally exhibited higher reactivity compared with normal and partial waxy starches. For the substituted starches, no differences in reactivity were observed among the cultivars or between the two granule types.  相似文献   

12.
Waxy hull-less barley (HB) starches containing 0 or 5% amylose were cross-linked with phosphorus oxychloride and the cross-linked starches were hydroxypropylated with propylene oxide. For comparison, waxy corn and potato starches were similarly modified. For all starches, cross-linking inhibited granule swelling and prevented swollen granules from disintegration, resulting in dramatic improvement in pasting properties and tolerance to cooking shear and autoclaving. Cross-linked waxy HB starches were more tolerant to cold storage and cooking shear than cross-linked waxy corn starch. Hydroxypropylation of the cross-linked starches reduced granule crystallinity and gelatinization temperature, and improved granule swelling, paste clarity, and freeze-thaw stability. The double-modified waxy HB starches showed higher cold tolerance than similarly modified waxy corn and potato starches, as judged by freeze-thaw stability and clarity after cold storage. These results indicated that the cross-linked and double-modified waxy HB starches together may have a wide range of food applications. This study indicated that the behavior of granule swelling and disintegration of swollen granules played an important role in governing paste viscosity, clarity, and freeze-thaw stability of waxy HB starches.  相似文献   

13.
A series of cross‐linked hydroxypropylated corn starches were extruded with a Leistritz micro‐18 co‐rotating extruder. Extrusion process variables including moisture (30, 35, and 40%), barrel temperature (60, 80, and 100°C), and screw design (low, medium, and high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches showed a gel phase with distorted granules and granule fragments after extrusion at 60°C. After extrusion at 100°C only a gel phase was observed with no granular structures remaining. High performance size exclusion chromatography (HPSEC) equipped with multiangle laser light‐scattering (MALLS) and refractive index (RI) detectors showed extruded starches degraded to different extents, depending on extrusion conditions. The average molecular weight of the amylopectin of unextruded native corn starch was 7.7 × 108. Extrusion at 30% moisture, 100°C, and high shear reduced the molecular weight of amylopectin to 1.0 × 108. Hydroxypropylated normal corn starch extruded at identical conditions showed greater decreases in amylopectin molecular weight. With the addition of cross‐linking, the amylopectin fractions of the extruded starches were less degraded than those of their native and hydroxypropylated corn starch counterparts. Similarly, increasing moisture content during extrusion lowered amylopectin degradation in the extruded starches. Increasing temperature during extrusion of cross‐linked hydroxypropylated starches at high moisture content (e.g., 40%) lowered amylopectin molecular weights of the extruded starches, whereas increasing extrusion temperature at low moisture content (30%) resulted in less degraded molecules. This difference was attributed to the higher glass transition temperatures of the cross‐linked starches.  相似文献   

14.
Granule size distribution of wheat starch is an important characteristic that can influence its chemical composition, which in turn may affect its functionality. The granule size distribution and chemical composition of soft wheat starches were characterized and compared and relationships among those properties were identified. Thirty-four starch samples from 12 soft wheat cultivars grown in the eastern half of the United States were examined. Granule size distribution was characterized using a laser light-scattering technique. Amylose and phospholipid contents were determined using colorimetric procedures. A clear trimodal distribution of granule sizes was shown by 26 out of 34 starch samples: small granules with diameters <2.8 μm, midsize granules with diameters of 2.8–9.9 μm, and large granules with diameters >9.9 μm. Volume% distribution of granules within the three size classes had ranges of 9.7–15.2% (small), 13.4–27.9% (medium), and 57.9–76.9% (large). Highly significant differences were seen among the cultivars for volume% of granules within the ranges of 9.9–18.5 μm and 18.5–42.8 μm. Cultivar specific surface area means also differed. The environment affected granule size distribution, with some cultivars exhibiting more variation than others. Pioneer 2555 was the least variable, whereas Pioneer 2550 and Geneva were the most variable cultivars. Mean total amylose (TAM), apparent amylose (AAM), and lysophospholipid (LPL) values varied significantly among cultivars. TAM was positively correlated with the volume% of granules of 9.9–18.5 μm. LPL was negatively correlated with mean starch granule diameter and positively correlated with specific surface area of granules, indicating smaller granules tended to have higher lipid contents. Results suggest that significant differences exist in granule size distribution of soft wheat starches and affect starch chemical composition. Data also suggest it is possible that lipid is preferentially associated with the biosynthesis of small starch granules.  相似文献   

15.
To obtain an indication of the effect of increasing the starch amylose content above normal levels (27–74%) and increasing the percentage of B‐type starch granules (11–60%) on durum dough properties and the quality of the spaghetti derived from these doughs, the reconstitution approach was used. Reconstituted flours were prepared from a common Wollaroi gluten, solubles and tailings fraction combined with starches containing varying B‐granule contents, or with starches from maize with varying amylose content. An increased B‐granule content increased farinograph water absorption. Cooked spaghetti firmness was highest with B‐type granules at 32–44% (volume percentage basis), which is ≈10–15% higher than normally found in durum starch. Increasing the amylose content in the starch caused the dough to be more extensible, increased spaghetti firmness, and decreased water absorption with optimum quality of amylose at 32–44%. The information indicates there would be benefit in producing durum wheats with slightly elevated B‐granule and amylose contents.  相似文献   

16.
The relative amounts of amylose and amylopectin in maize starch were determined in samples representing hard and soft endosperm. Although differences were small, amylose content differed significantly (P < 0.001 and P < 0.05) between the two types of endosperm, with hard endosperm containing a higher percentage of amylose. Scanning electron microscopy was used to determine that the surface appearance of starch granules from hard and soft endosperm differed. Starch granules from soft endosperm had randomly distributed pores on their surfaces, which had a rough appearance. Few pores were observed on granules from hard endosperm. A fairly common occurrence with starch granules from soft endosperm was the development of wrinkles or fissures upon prolonged exposure to the beam of the electron microscope. Thus, a correlation existed between endosperm hardness, amylose content, and susceptibility to wrinkling and fissures. The granules of the soft endosperm of maize, presumably less mature than the granules of the hard endosperm, have a lower amylose content (20.5 ± 1.9% vs. 23.0 ± 1.0%), exhibit more surface pores, and are more susceptible to wrinkling in an electron beam, compared with granules of the hard endosperm. Results suggested that the composition and internal architecture of the starch granule differ depending on the hardness of the endosperm from which it was obtained.  相似文献   

17.
The rheological properties of granular materials and dispersions of solid particles in fluids are dependent on the packing characteristics of the particles. Maximum packing fractions (Φm) have been measured for corn, wheat, rice, potato, and amaranth starches, in the dry state and dispersed in either ethanol or hexane, using a tapping method. The observed maximum packing fraction increases with tapping time to a constant value. Values measured for dry starches were lower than those measured in liquids and reflect the effects of granule shape and intergranular friction. Values measured in fluids for potato, corn, and wheat starches were all similar in magnitude, and in the range of values (0.58–0.63) for random loose packing and random close packing of monodisperse spheres. Values for amaranth and rice starches were significantly lower due to agglomeration and clumping of individual granules. Blends of corn and potato starches show a slight enhancement of packing, with some Φm values greater than potato starch, consistent with data for bimodal blends of spheres. Blends of rice and potato starches displayed enhanced packing above ideal mixing but did not exceed the packing fraction of the potato starch. Knowledge of starch packing fractions is required for fundamental understanding of the rheological properties of granular starch‐filled materials and important for predicting processing characteristics.  相似文献   

18.
Native starch from waxy mutant wheat Tanikei A6599‐4 is known to exhibit more stable hot paste viscosity than a typical waxy wheat (Tanikei H1881) and waxy corn. The objective of this study was to investigate the starch paste properties of Tanikei A6599‐4 after cross‐linking and compare with Tanikei H1881 and waxy corn. As an example of cross‐linking, the reaction (at 30, 60, 120, and 360 min) with sodium trimetaphosphate was used. In Rapid Visco Analyser (RVA) measurement, the unique characteristic was maintained in Tanikei A6599‐4 starch cross‐linked at low reaction time (<120 min) levels. Cross‐linking at a high reaction time (360 min) level suppressed the swelling of both Tanikei A6599‐4 and Tanikei H1881 starches but not waxy corn starch. Although unmodified Tanikei A6599‐4 starch showed the lowest paste clarity among unmodified waxy starches, this defect became unremarkable when starch was cross‐linked for ≥120 min. In gel‐dispersed dynamic viscoelasticity measurement, the order of G′ and G″ values was always Tanikei A6599‐4 > Tanikei H1881 > waxy corn. This indicates that cross‐linked Tanikei A6599‐4 and Tanikei H1881 starches have different starch properties and that swollen Tanikei A6599‐4 starch granules are more rigid than swollen Tanikei H1881 starch granules.  相似文献   

19.
Microscopic techniques were used to determine accessible regions in various starches under different swelling conditions. Fatty acyl chlorides of increasing chain length (C6–C16) were reacted with 2‐aminopyridine to produce the corresponding fatty acyl amides. Starch granules (common corn, waxy maize, potato) were treated with the series of fluorescent amides under a variety of conditions: anhydrous (hot pyridine), aqueous (no heat), and aqueous alkali (49°C, with and without swelling‐inhibiting salts). Isolated granules were then viewed by confocal laser scanning microscopy to determine reagent analog penetration. All populations of granules were heterogeneous with respect to fatty acyl amide penetration, but general patterns could be discerned. Observations also indicated that the area surrounding the hilum was more easily penetrated than was the rest of the granule matrix. No substantial differences in penetration of the fluorescent fatty acyl amides as the chain length increased (C6–C16 was observed in hot pyridine‐swollen common corn starch granules. Common corn and potato starch granules swollen in room temperature water showed cutoffs for granular exclusion at C14 and C12, respectively. Common corn, waxy maize, and potato starch granules treated under industrial etherification conditions (heat, pH ≈ 11, swelling‐inhibiting salts) were less accessible to C6, C8, and C10 fluorescent amides when sodium citrate was present than when sodium sulfate was used, and less accessible in either case than in water alone or in hot anhydrous pyridine. However, appreciable differences between inhibition by sodium sulfate and sodium citrate were not observed in every case.  相似文献   

20.
The effects of amylose, protein, and fiber contents on ethanol yields were evaluated using artificially formulated media made from commercial corn starches with different contents of amylose, corn protein, and corn fiber, as well as media made from different cereal sources including corn, sorghum, and wheat with different amylose contents. Second‐order response‐surface regression models were used to study the effects and interactions of amylose, protein, and fiber contents on ethanol yield and conversion efficiency. The results showed that the amylose content of starches had a significant (P < 0.001) effect on ethanol conversion efficiency. No significant effect of protein content on ethanol production was observed. Fiber did not show a significant effect on ethanol fermentation either. Conversion efficiencies increased as the amylose content decreased, especially when the amylose content was >35%. The reduced quadratic model fits the conversion efficiency data better than the full quadratic model does. Fermentation tests on mashes made from corn, sorghum, and wheat samples with different amylose contents confirmed the adverse effect of amylose content on fermentation efficiency. High‐temperature cooking with agitation significantly increased the conversion efficiencies on mashes made from high‐amylose (35–70%) ground corn and starches. A cooking temperature of ≥160°C was needed on high‐amylose corn and starches to obtain a conversion efficiency equal to that of normal corn and starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号