共查询到20条相似文献,搜索用时 15 毫秒
1.
中国亚热带地区冷杉和砂仁 农林系统的土壤肥力研究 总被引:4,自引:0,他引:4
A trial of interplanting and non-interplanting villous amomum(Amomum villosum Lour.) under the canopy of Chinese fir(Cunninghamia lanceolata Hook.)at age 22 was established in Sanming,Fujian of China,and a survey on soil fertility was carried out 10 years after its establishment .Compared with the control(non-interplanting), the properties of soil humus in agroforestry system were ameliorated,with a higher level of humification and resynthesis of organic detritus .The soil microbial population and enzymatic actvities were both higher under the influence of villous amomum.Both the nutrient supplying and nutrient conserving capacities of the soil were improved,This agroforestry system exhibited an advantage of improved soil fertility,as well as an accelerated rowth of Chinese fir ,it was therefore a sustainable management system suited for Chinese fir in South China. 相似文献
2.
Xiaomei Chen Yuelin Li Jiangming Mo Dennis Otieno John Tenhunen Junhua Yan Juxiu Liu Deqiang Zhang 《植物养料与土壤学杂志》2012,175(6):947-953
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils. 相似文献
3.
Xiang-Min Fang Xiao-Fei Hu Ping-Cheng Yuan Jing Li Xi Chen 《Soil Science and Plant Nutrition》2013,59(4):448-459
Aluminum (Al) and nutrients are key factors to influence tea (Camellia sinensis L.) productivity and quality, while how they interplay in tea plantations under the pressure of global change and increasing fertilization is little studied. In this study, we selected the tea plantations along an age-chronosequence to study Al fractions using a sequential extraction procedure, and nutrient concentrations in topsoil and subsoil and various plant organs. Our results indicated that Al levels and nutrient concentrations in soils and plants generally increased with planting year (P < 0.05), and soil Al bioavailability was positively correlated with Al concentrations in most plant organs. Significant negative relations among pH and most extractable Al fractions in both soil layers suggested that decreased pH would directly alter soil-plant Al cycling due to exogenous nitrogen (N) fertilizer and atmospheric acid deposition. Topsoil total phosphorus (P) was positively correlated with most Al fractions, and root P was positively correlated with root Al concentration, both of which indicate that P and Al were synchronously absorbed by roots in acid tea soils. In addition, topsoil organic carbon was positively correlated with both active and inert Al fractions, indicating that above-ground organic litters would be the main source of elevated Al levels in older tea plantations. Clearly, Al enrichment in tea leaves with increasing planting year needs to be considered under management practices with heavy N and P fertilizers and increasing atmospheric acid deposition in subtropical China. 相似文献
4.
红壤稻田土壤理化及生物学性状的动态变化特征 总被引:7,自引:0,他引:7
Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical, and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil, which was 39% in the original uncultivated wasteland, decreased, to 17% in the 80-year paddy field, while silt (0.02--0.002 mm) content increased. Additionally, macroporosity increased and pore shapes became more homogeneous. Soil Ph generally increased. Soil organic C and total N content of the 0-10 cm layer increased from 4.58 and 0.39 g kg-1 to 19.6 and 1.62 g kg-1, respectively in the paddy fields after 30-year cultivation and then remained stable. Soil total P content increased from 0.5 to 1.3 g kg-1 after 3 years of rice cultivation, indicating that application of phosphate fertilizer could accelerate phosphorous accumulation in the soil. Total K content in the 0--10 cm soil layer for the 80-year paddy fields decreased by 28% compared to that of the uncultivated wasteland land. Total Fe and free Fe contents declined with years of cultivation. The bacterial population increased and urease activity noticeably intensified after years of cultivation. In this chronosequence it appeared that it took 30 years to increase soil fertility to a relatively constant value that was seen after 80 years of cultivation. 相似文献
5.
南亚热带杉木林改造对土壤及凋落物持水能力的影响 总被引:1,自引:0,他引:1
对杉木林进行改造,是提高林分质量和生态效能的重要措施。该文研究了杉木林改造前期对土壤及凋落物持水能力的影响。结果表明,在杉木林改造前期,不同林龄段试验林间土壤容重、孔隙度和土壤持水量差异不显著(P > 0.05),但随林龄的增加呈上升趋势,土壤涵养水源能力有所增加。凋落物量及其持水能力随改造林龄的增加呈上升趋势,9~11 a林龄试验林凋落物及持水能力显著高于3~5 a林龄试验林(P < 0.05),而其凋落物持水能力与5~7 a林龄试验林差异不显著(P > 0.05)。浸水试验表明,凋落物持水率随浸泡时间的增加呈对数曲线增长,吸水速率与浸泡时间呈反函数关系。凋落物最大持水量远小于土壤最大持水量,仅为土壤的0.18%,0.11%和0.08%,土壤为森林涵养水源的主体。通过分析试验林土壤和凋落物持水能力发现,杉木+米老排+阴香+山杜英+枫香、杉木+火力楠+米老排+阴香+红荷和杉木+木荷+山杜英+香椿+山黄麻改造模式对土壤和凋落物持水能力影响效果较好,其水文功能较高。 相似文献
6.
不同栽植代数杉木林养分循环的比较研究 总被引:15,自引:0,他引:15
在全国杉木中心产区福建建瓯,选择不同栽植代数的杉木人工林,进行养分循环的比较研究,结果表明,不同栽植代数杉木林的养分循环存在差异。随栽植代数的增加,林分养分的年归还量、年吸收量及归还吸收比均呈递减趋势,表现为1代2代,而营养元素的周转期则呈增加趋势,说明栽植代数对杉木林养分的归还量及吸收量有较大影响,多代连栽不利于杉木林地肥力的恢复。随林分年龄的增加,杉木林养分年积累量呈明显下降趋势,1代成熟林比中龄林下降14.74%,2代成熟林比中龄林下降11.86%;而杉木林养分的年归还量、年吸收量和归还吸收比则随林分年龄的增加呈增加趋势,表现为成熟林中龄林,因此适当延长轮伐期有利于杉木林的养分归还。 相似文献
7.
中国中亚热带杉树及常绿阔叶林中焚烧对养分流失及土壤肥力的影响 总被引:8,自引:0,他引:8
A Chinese fir forest(Cunninghamia lanceolata,CF) and an evergreen broadleaved forest(EB) located in Fujian Province,southeastern China,were examined following slash burning to compare nutrient capital and topsoil properties with pre-burn levels.After fire,nutrient(N,P and K) removal from burining rsidues was estimated at 302.5kg ha^-1 in the CF and 644.8kg ha^-1 in the EB.Fire reduced the topsoil capitals of total N and P by about 20% and 10%,respectively,in both forests,while K capital was incresed in the topsoils of both forests following fire.Total site nutrient loss through surface erosion was 28.4kg(N) ha^-1 ,84.kg(P)ha^-1 and 328.7kg(K) ha^-1 in the CF.In the EB,the losses of total N,P and K were 58.5,10.5 and 396.3kg ha^-1,respectively,Improvement of soil structure and increase in mineralization of nutrients associated with increasesd microbe number and enzyme acitvityes and elecvated soil respiration occurred 5 day after fire.Howerver,organic matter and available nutrient contents and most of other soil parameters declined ont year after fire on the burned CF and EB topsoils.These rsults suggest that short-tmerm site productivity can be stimulated immediately.but reduced subsequently by soil and water losses,especially in south China,where high-intensity precipitation,steep slopes and fragile soil can be expected,Therefore,the silvicultural measurements should be developed in plantation management. 相似文献
8.
中国杉连作对土壤肥力的影响 总被引:10,自引:0,他引:10
The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soil samples from different forest stands:the first and second plantations of Chinese fir,evergreen broad-leaved forests,and clear-cut and burnt Chinese fir land located at Xihou Village,Nanping of Fujian Province.The soils were humic red soil originated from weathered coarse granite of the Presinian system.Soil pH,CEC,base saturation ,exchangeable Ca^2 ,exchangeable Mg^2 and A1-P declined after continuous plantation of Chinese fir.The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leaching of nutrients,soil erosion and nutrient losses due to clear cutting and slash burning of the preceduing plantation caused the soil deterioration .Only some of main soil nutrients decreased after continuous plantation of Chinese fir,depending on specific silvicultural system,which was different from the conclusions in some other reports which showed that all main nutrients,such as OM,total N,available P and available K decreased,Some neccessary step to make up for the lost base,to apply P fertilizer and to avoid buring on clear cut lands could be taken to prevent soil degradation and yield decline in the system of continuous plantation of Chinese fir. 相似文献
9.
南亚热带三种典型植被土壤动物对模拟N沉降增加的早期响应 总被引:10,自引:0,他引:10
A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m^-2 year^-1), and a medium N (10 g m^-2 year^-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4^+ and NO3^- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3^- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type, and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition. 相似文献
10.
Ming Liu Taolin Zhang 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2016,66(1):67-74
The role of soil elemental ecological stoichiometry in evaluation of nutrient cycling and limitation was not clear in local spatial scale. Thus, characteristic of soil C, N and P stoichiometric ratios and their relationships to land-use and soil properties were analyzed in a small catchment of subtropical China. Results showed that there were constrained soil C:N ratios in a small catchment. Soil C:P and N:P ratios were also constrained at the beginning; but they became variable after 10 years of different land uses. Soil C:N ratios in the small catchment were similar to those at national scale, but soil C:P and N:P ratios were remarkably lower at the local scale. Soil C:P ratios in paddy fields were 5.1–76.9% and 16.0–80.4% higher than those for other land uses in 2000 and 2010, respectively; the corresponding soil N:P ratios were also 3.8–66.7% and 19.1–75.0% higher. Over time, soil C:N ratios increased approximately 19.7–29.6% for all land uses after 10 years of utilization. Soil C:P and N:P ratios also increased for most land uses. Clay content was an important factor influencing soil C:P and N:P ratios. Except for paddy fields, N was still the limiting nutrient in most land uses, evaluating by elemental stoichiometry. Future work should focus on determining direct evidence of C and N limitations and their relationships to elemental stoichiometry in a small catchment. 相似文献
11.
土壤呼吸是陆地生态系统碳循环的一个重要过程,开展环境因子和改变碳输入对土壤呼吸影响的研究具有重要意义.2015年3月-2016年2月,在南亚热带海岸沙地典型天然次生林中设置去除根系、去除凋落物、加倍凋落物和对照4种处理,采用LI-8100连续观测改变碳输入对土壤呼吸的影响.结果表明:改变碳输入没有显著影响l0cm土壤温度和湿度(P>0.05);不同处理土壤呼吸速率存在明显的季节变化,表现为夏高冬低,最大值出现在5月或者6月,最小值出现在11月或12月;土壤呼吸速率的年均值为加倍凋落物>对照>去除根系>去除凋落物,不同改变碳输入方式均降低了土壤呼吸的Q10值;矿质土壤呼吸、凋落物呼吸和根系呼吸对土壤总呼吸的贡献分别为41.24%、43.29%和15.45%;不同处理土壤呼吸速率分别与土壤温度和湿度呈显著的指数和线性正相关(P<0.05),双因子模型能解释土壤呼吸变异的45% ~ 69%;改变碳输入影响土壤可溶性有机碳和微生物生物量碳,不同处理土壤呼吸速率与可溶性有机碳和微生物生物量碳呈正相关.因此,改变碳输入引起土壤易变碳的变化进而影响土壤呼吸. 相似文献
12.
Soil biological changes for a natural forest and two plantations in subtropical China 总被引:9,自引:0,他引:9
Conversion of natural forests into pure plantation forests is a common management practice in subtropical China. To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm) were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming, Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05) in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized. 相似文献
13.
间伐对杉木林土壤CO2通量的影响 总被引:1,自引:0,他引:1
Forest management is expected to influence soil CO2 efflux (FCO2) as a result of changes in microenvironmental conditions, soil microclimate, and root dynamics. Soil FCO2 rate was measured during the growing season of 2006 in both thinning and non-thinning locations within stands ranging from 0 to 8 years after the most recent thinning in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations in Huitong Ecosystem Research Station, Hunan, China. Soil temperature and moisture were also measured to examine relationships between FCO2 and soil properties. Forest thinning resulted in huge changes in FCO2 that varied with time since cutting. Immediately following harvest (year 0) FCO2 in thinning area increased by about 30%, declined to 20%-27% below pre-cutting levels during years 4-6, and recovered to pre-cutting levels at 8 years post-cutting. A similar temporal pattern, but with smaller changes, was found in non-thinning locations. The initial increase in FCO2 could be attributed to a combination of root decay, soil disturbance, and increased soil temperature in gaps, while the subsequent decrease and recovery to the death and gradual regrowth of active roots. Strong effects of soil temperature and soil water content on FCO2 were found. Forest thinning mainly influenced FCO2 through changes in tree root respiration, and the net result was a decrease in integrated FCO2 flux through the entire felling cycle. 相似文献
14.
中国亚热带耕作雏形土及强酸土的可蚀性与渗透性关系 总被引:8,自引:0,他引:8
To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of 15NH4-N and glucose, 40 days) to observe the sink of added 15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P ≤ 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nmic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P ≤ 0.05) with Nmic, SAN, and NNR along with Nmic under beech being significantly higher (P ≤ 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, > 1.7 g cm-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF < 0.063 mm, > 1.7 g cm-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils. 相似文献
15.
抛荒土地不同处理及利用方式对喀斯特地区土壤微生物的影响 总被引:1,自引:1,他引:1
土壤微生物特性是土壤养分的储存库,土壤养分也影响土壤微生物活性,了解两者的相互作用机制对土地利用与管理提供理论依据,而喀斯特地区不同土地利用方式相关研究较少。基于喀斯特峰丛洼地火烧、刈割、刈割除根、封育、种植玉米、种植桂牧1号杂交象草6种坡面典型的土地利用方式的动态监测样地建设与调查,该文分析了不同土地利用方式下土壤微生物特性,揭示其与土壤养分相互作用机制。结果表明,不同土地利用方式对土壤养分的影响不同,土壤有机质(soil organic matter,SOM)、全氮(total nitrogen,TN)、全磷(total phosphorus,TP)、碱解氮(available nitrogen,AN)等沿封育、火烧、刈割、刈割除根、种植桂牧1号、种植玉米等土地利用方式的转变而减少;不同土地利用方式土壤微生物生物量各不同,土壤微生物量碳(microbial biomass carbon, MBC):244.98~1 246.89 mg/kg、土壤微生物量氮(microbial biomass nitrogen,MBN):35.44~274.69 mg/kg、土壤微生物量磷(microbial biomass phosphorus,MBP):30.88~64.72 mg/kg,其中,种植玉米土壤微生物生物量均最低,其土壤质量退化现象严重;不同土地利用方式土壤微生物种群数量及组成影响不同,种植玉米和桂牧1号杂交象草细菌占绝对优势,而火烧、刈割、刈割除根及封育均以放线菌占绝对优势,真菌的比例很少;不同土地利用方式土壤微生物特性与土壤养分之间相互作用关系不同:火烧的土壤TP和MBP、全钾(total potassium,TK)与MBC、TN与放线菌作用最强且均呈正相关,刈割的土壤TN与MBC呈正相关,刈割除根的速效磷(available phosphorus,AP)与MBN正相关,封育的pH值与MBC、真菌负相关,种植玉米的TN、TK与MBP负相关,种植桂牧1号杂交象草的pH值与真菌负相关、与放线菌正相关;聚类分析可以将喀斯特峰丛洼地6种土地利用方式划分为4类,其中封育和火烧最好。 相似文献
16.
There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil pH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped. 相似文献
17.
以大兴安岭林区不同发育阶段兴安落叶松人工林和天然次生林为研究对象,采用野外调查和定量分析相结合的方法,对林地土壤有机质、土壤腐殖质组成、土壤酸度指标及其主要养分含量的变化进行测定和分析。利用主成分分析的方法,以各主成分特征贡献率为权重,加权计算各林地土壤肥力综合指标值。结果表明:随着林龄的增长,不同发育阶段落叶松人工林土壤酸度总体呈现升高的趋势,土壤有酸化的迹象;全磷和速效钾呈现降低的趋势;有机质、水解氮、胡敏酸和胡敏素含量在近熟林略有升高,但总体呈现降低的趋势。土壤肥力评价结果为:天然林>幼龄林>近熟林>中龄林>成熟林,即随着林龄的增长,土壤肥力迅速下降,其主要原因是林地凋落物分解缓慢。因此,建议通过适度提高林地抚育强度,调整群落结构,增加林地光照,诱导天然阔叶树种进入,形成针阔混交林的调控措施,调节落叶松人工纯林凋落物分解与积累的矛盾,以维持地力平衡和提高林地生产力。 相似文献
18.
CHEN Dan FU Xiao-Qing WANG Cong LIU Xin-Liang LI Hang SHEN Jian-Lin WANG Yi LI Yong WU Jin-Shui 《土壤圈》2015,25(2):263-274
The forest ecosystem plays a pivotal role in contributing greenhouse gases to the atmosphere.In order to characterize the temporal pattern of nitrous oxide(N_2O) emissions and identify the key factors affecting N_2O emissions from a Masson pine forest in a hilly red-soil region in subtropical central China,we measured the N_2O emissions in Jinjing of Hunan Province using the static chambergas chromatographic method for 3 years(2010-2012) and analyzed the relationships between the N_2O fluxes and the environmental variables.Our results revealed that the N_2O fluxes over the 3 years varied from-36.0 to 296.7 μg N m~(-2) h~(-1),averaging 18.4±5.6 μg N m~(-2) h~(-1)(n=3).The average annual N_2O emissions were estimated to be 1.6±0.3 kg N ha~(-1) year~(-1).The N_2O fluxes exhibited clear intra-annual(seasonal) variations as they were higher in summers and lower in winters.Compared with other forest observations in the subtropics,N_2O emissions at our site were relatively high,possibly due to the high local dry/wet N deposition,and were mostly sensitive to variations in precipitation and soil ammonium N content.In this work,a multiple linear regression model was developed to determine the influence of environmental factors on N_2O emissions,in which a category predictor of "Season" was intentionally used to account for the seasonal variation of the N_2O fluxes.Such a model explained almost 40%of the total variation in daily N_2O emissions from the Masson pine forest soil studied(P0.001). 相似文献
19.
Xiaoxia Zou Weihua Wang Xiaolu Sun Defeng Jiang Jianlin Wang 《Soil Use and Management》2022,38(3):1416-1429
The excessive application of nitrogen (N) has caused a series of environmental problems. Brown earth (BE) is one of the main soil types in China, and the specific soil-forming conditions make it high risk of nutrient leaching. Determining the soil fertility of BE and optimal N application rates for main crops’ production is important to reduce nitrogen leaching. Based on China's second national soil survey, the basic fertility level of BE was defined, and the effects of four N management methods [one-time base fertilizer (BF), topdressing (TF), combined organic fertilizer (OF) and controlled-release fertilizer (CF)] on maize and wheat yield and N efficiency were analysed. The study found that except for lower phosphorus content (level 4), the soil fertility of BE was at a moderate level (level 3). Compared with no N application, these four N management methods significantly increased the maize and wheat yield and showed the trend of OF > CF > TF > BF; TF, CF and OF significantly increased the N efficiency comparison with BF. The optimal N application rates for wheat and maize were 129–174 kg ha−1 and 170–235 kg ha−1, respectively, when considering the win–win of yield and N efficiency. N fertilizer reduction in BE needs to be further strengthened, and the specific N application rates to achieve profit maximization should be adjusted depending on environmental factors. 相似文献
20.
Changes in soil quality due to introduction of broad-leaf trees into clear-felled Chinese fir forest in the mid-subtropics of China 总被引:2,自引:0,他引:2
Y. Huang S.L. Wang Z.W. Feng Z.Y. Ouyang X.K. Wang Z.Z. Feng 《Soil Use and Management》2004,20(4):418-425
Abstract. After clear-felling of a first generation Chinese fir ( Cunninghamia lanceolata ) forest, mixed stands of Chinese fir and Michelia macclurei (a broadleaf tree) (MCM), pure M. macclurei stands (PMS) and pure Chinese fir stands (PCS) were established in 1983. The effects on soil were evaluated 20 years after planting by measuring physicochemical, microbiological and biochemical parameters. Both broadleaf monoculture and mixtures of broadleaf and conifer exerted a favourable effect on soil fertility. A soil quality index (SQI) decreased in the order: PMS (0.62) > MCM (0.57) > PCS (0.41). Improvement in soil quality, enhanced biological activity and forest productivity demonstrated that mixed stands are an effective measure to maintain sustainable forest productivity, as well as to control soil degradation under successive stands of Chinese fir. In addition, since the microbiological and biochemical parameters measured were sensitive to the forest management, they may be potential indicators for assessing the sustainability of different management systems. The results also showed that total organic carbon, cation exchange capacity and microbial biomass carbon are effective indicators of the improvement or deterioration of soil quality under forest. 相似文献