首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arabinoxylans (AX) are the main nonstarch polysaccharides found in wheat flour. Structural changes of AX in refrigerated dough are linked to deleterious effects on refrigerated dough quality during storage. The purpose of this research was to evaluate the effect of cultivar and growing environment on dough syruping during refrigerated storage in relation to apparent xylanase activity and AX chemistry in hard red spring (HRS) wheat. Eight HRS cultivars that were grown at six locations over two years in North Dakota were evaluated for dough syruping during 15 days of refrigerated storage. When compared with genotypic effect, growing environment had a greater impact on apparent xylanase activity and dough syruping; they were found to have significant associations by log‐linear regression analysis. Specifically, wheat samples produced in a dry environment had lower apparent xylanase activity and degree of dough syruping than those from a wet environment. Some HRS cultivars were identified to be consistently lower in apparent xylanase activity and dough syruping across all growing environments, indicating that those cultivars had more stability over growing environment than other cultivars. These results indicate that certain cultivars that are grown in relatively dry environments in North Dakota are more suitable for use in refrigerated dough formulations.  相似文献   

2.
J. Zhu  K. Khan 《Cereal Chemistry》2001,78(2):125-130
Six genotypes of hard red spring (HRS) wheat were grown at seven environments in North Dakota during 1998. Effects of genotype and environment on glutenin polymeric proteins and dough mixing and baking properties were examined. Genotype, environment, and genotype‐by‐environment interaction all significantly affected protein and dough mixing properties. However, different protein and quality measurements showed differences for relative influences of genotype and environment. Total flour protein content and SDS‐soluble glutenin content were influenced more by environmental than genetic factors, while SDS‐insoluble glutenin content was controlled more by genetic than environmental factors. Significant genotypic and environmental effects were found for the size distribution of SDS‐soluble glutenins and between SDS‐soluble and SDS‐insoluble glutenins as well as % SDS‐insoluble glutenins. With increased flour protein content, the proportions of monomeric proteins and SDS‐insoluble glutenin polymers appeared to increase, but SDS‐soluble glutenins decreased. Flour protein content and the size distribution between SDS‐soluble and SDS‐insoluble glutenin polymers were significantly correlated with dough mixing properties. Environment affected not only total flour protein content but also the content of different protein fractions and size distributions of glutenin polymers, which, in turn, influenced properties of dough mixing. Flour protein content, % SDS‐insoluble glutenin polymers in flour, and ratio of SDS‐soluble to SDS‐insoluble glutenins all were highly associated with dough mixing properties and loaf volume.  相似文献   

3.
《Cereal Chemistry》2017,94(4):752-759
The effect of salt (NaCl) on the breadmaking quality of 37 varieties of Canadian Western Red Spring wheat (Triticum aestivum L.) was investigated along with dough stickiness for a 20 variety subset. A principal components analysis indicated that dough development time (DDT), mixing tolerance index (MTI), and stability (STA) were highly correlated. DDT showed an inverse relationship with MTI (r = –0.73) and a positive relationship with STA (r = 0.89). STA was also negatively related to MTI (r = –0.76). A reduction of salt from 2.0 to 1.1% (based on flour weight) was considered from a practical perspective. Each variety responded differently to salt reduction. Obtaining an optimal dough consistency with less salt required less work input and shorter mixing time. Overall, decreasing loaf volume with reducing salt content was observed, although certain varieties produced the opposite effect. This suggests that for a particular flour, depending on the inherent flour strength, there is a level of NaCl that produces an optimum between gluten strength and gas‐holding capacity of the dough, resulting in a loaf with good crumb texture and an even distribution of bubble sizes. A stickiness test was performed on selected varieties to evaluate the dough handling properties at 1.1 and 2.0% salt levels. The overall trend showed an increase in stickiness with a decrease in the salt content; however, certain varieties showed no change.  相似文献   

4.
Three winter wheat varieties with differing breadmaking quality were grown at two locations in two years at 0 or 3 × 60 kg of nitrogen application. The effect of nitrogen on amount of different components of gluten proteins was determined by reverse-phase HPLC. A high amount of nitrogen led generally to a significant increase of total protein content. However, this increase was obvious only for the gluten proteins; albumins and globulins remained nearly unaffected. The effect of increased protein content on gliadin to glutenin (gli-glu) ratio was inconsistent. While increased protein content increased the gli-glu ratio in the variety Capo, the opposite was true for the variety Renan. Gli-glu ratio of the variety Lindos showed no discernible tendency. As total protein content increased, the ratio of low molecular weight (LMW) to high molecular weight (HMW) glutenins decreased consistently, i.e., in all varieties, in both years and locations. Change of LMW to HMW ratio showed a significant negative correlation to sedimentation value and bread volume. There was no consistent change in the ratio between x- and y-type HMW subunits due to fertilization, as could be shown by densitometric measurements on SDS-PAGE gels. This ratio appeared to be dependent on the genotype and has decreased with decreasing quality. The amount of x-type subunits correlated closely with sedimentation value and bread volume. These results suggest that ratio of HMW glutenins, especially x-type subunits, to total protein content could be the best early detectable parameter with high predictive value for breadmaking quality.  相似文献   

5.
A negative relationship between dough strength and dough extensibility would pose a problem for breeding hard wheats, as both dough strength and dough extensibility are desirable. We derived 77 recombinant inbred lines (RIL) from a cross between hard red spring wheat cultivars McNeal and Thatcher. McNeal produces flour with stronger dough and lower extensibility than does Thatcher. RIL were evaluated for strength‐related properties using mixograph analysis and extensibility parameters using the Kieffer attachment to the TA.XT2 texture analyzer. Additionally, the RIL were test baked. Measurements using the mixograph and the Kieffer attachment were highly heritable. Maximum dough extensibility (Extmax) was negatively correlated with resistance to extension (Rmax) (r = ‐0.74) and with mixograph tolerance (r = ‐0.45). Loaf volume was correlated with both Rmax (r = 0.42) and area under the extensigraph curve (r = 0.44) based on partial correlation analysis adjusted for protein differences. Extmax was negatively correlated with loaf volume (r = ‐0.26). The McNeal allele for polymorphism at the Gli1‐B1 locus on chromosome 1BS caused high dough‐mixing tolerance and low dough extensibility. Our results suggest that traditional selection criteria in hard red spring wheat, including tolerance to dough mixing and high loaf volume, may result in reduced dough extensibility.  相似文献   

6.
High molecular weight (HMW) or low molecular weight (LMW) subunits of different chemical state (reduced, reoxidized with KBrO3, or KIO3) or gliadins were added in 1% amounts to a base flour of the wheat cultivar Rektor and mixed with water. The corresponding doughs were then characterized by microscale extension tests and by microbaking tests and were compared to doughs from the base flour without additives. The maximum resistance of dough was strongly increased by HMW subunits in a reduced state and by HMW subunits reoxidized with KBrO3. A moderate increase of resistance was caused by HMW subunits reoxidized with KIO3 and by LMW subunits reoxidized with KBrO3 or KIO3. This resistance was strongly lowered by LMW subunits in a reduced state and by gliadins. The extensibility of dough was significantly increased only by gliadins and reduced HMW subunits; HMW subunits reoxidized with KBrO3 had no effect, and all other fractions had a decreasing effect. In particular, glutenin subunits reoxidized with KIO3 induced marked decrease of extensibility, resulting in bell‐shaped curve extensigrams, which are typical for plastic properties. The effect of reoxidized mixtures (2:1) of HMW and LMW subunits on maximum resistance depended on the oxidizing agent and on the conditions (reoxidation separated or together); extensibility was generally decreased. Bread volume was increased by addition of HMW subunits (reduced or reoxidized with KBrO3) and decreased by LMW subunits (reoxidized with KBrO3 or KIO3) and by a HMW‐LMW subunit mixture (reoxidized with KBrO3). The volume was strongly decreased by addition of reduced LMW subunits. A high bread volume was related to higher values for both resistance and extensibility.  相似文献   

7.
Breads baked from wheat flours (protein contents 14.1–16.5% at 14.0% mb) that were pretreated with 2–3 mL of gaseous acetic acid per kg of wheat flour, showed maximum bread height and specific volume (cm3/g). Flour-water suspension and the crumb pH values were gradually decreased with increased amounts of acetic acid. Gas generation and dough expansion tests with bread dough showed that the addition of the same amount of acetic acid, which achieved maximum specific volume, also showed the highest rate of gas generation and dough expansion. However, increasing acetic acid decreased these values. Scanning electron microscope (Cryo-SEM) observation showed that the bread dough made from the same acetic acid-treated flour indicated continuum and no cracks in the dough matrix. Evaluation of mixograms showed the decrease of mixing stability with increased acetic acid levels. Viscosity and water binding capacity of flour-water suspensions were sharply increased by the addition of acetic acid at pH 5.0–3.5.  相似文献   

8.
This research was initiated to investigate associations between flour breadmaking traits and mixing and empirical dough rheological properties under thermal stress. Thirty hard spring wheat flour samples were analyzed by a Mixolab standard procedure. Mixolab profiles were divided into six different stages, and torque measurements of individual stages were modeled by nonlinear curve fitting using a compound of two solution searching procedures, multidimensional unconstrained nonlinear minimization and genetic algorithm. Mixing patterns followed exponential equations. Dough torque patterns under heat constraint, specifically dough thermal weakening and pasting profiles, were described by a sigmoid logistic equation as a function of time. Dough stability during heating appeared important for bread loaf volume increase from significant correlations between bread loaf volume and parameters generated from models of a dough thermal weakening stage. Multivariate continuum regression was employed to calibrate prediction models of baking traits using Mixolab parameters. Coefficients of determination estimated from prediction models and cross‐validation were greater than 0.98 for bake water absorption, mixing time, and bread loaf volume, indicating that the Mixolab parameters have a potential to enhance evaluation of flour breadmaking quality.  相似文献   

9.
《Cereal Chemistry》2017,94(3):409-416
The chapatti and breadmaking quality of nine (eight Indian and one Australian) wheat (Triticum aestivum L.) cultivars was compared. The extension of a chapatti strip measured with a Kieffer dough extensibility rig correlated with chapatti scores for overall quality (r = 0.84), pliability (r = 0.91), hand feel (r = 0.72), chapatti eating quality (r = 0.68), and taste (r = 0.80). Overall chapatti quality also correlated with the resistance to extension of a chapatti strip (r = 0.68) when tested for uniaxial extension with a texture analyzer. The texture analyzer provided objectivity in the scoring of chapatti quality. The high‐molecular‐weight glutenin subunit protein composition assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis did not correlate with the overall chapatti score. A negative correlation was found between chapatti and bread scores (r = −0.77). The different requirements for chapatti and bread quality complicate the breeding of new wheat varieties and the exchange of germplasm between regions producing wheat for chapatti and those supplying bread producers.  相似文献   

10.
Canada Western Amber Durum wheat cultivars (4), Canada Western Red Spring (1), and Canada Western Hard White Spring (1) wheat were grown at three sites in 2007 to evaluate the effect of genotype (G) and environment (E) on the quality of yellow alkaline noodles (YAN). YAN were evaluated for color, appearance, and cooked texture. Brightness (L*) and yellowness (b*) of YAN made from durum cultivars were significantly higher than common wheat. Durum flour yellow pigment content was approximately fourfold greater than common wheat while noodle speckiness was approximately half of CWRS at 2 hr with environment accounting for >75% of the variance for each parameter. Resistance to compression (RTC) and recovery (REC) of cooked durum alkaline noodles were equivalent or superior to common wheat noodles even when lower grade durum wheat flour was used. In conclusion, cooked durum noodle texture parameters were all significantly influenced by genotype and environment, with environment accounting for 66–71% of their variance.  相似文献   

11.
Isoelectric protein concentrates (IPC) were prepared from one buckwheat (Fagopyrum esculentum) and five Amaranthus genotypes. Their effect on the mixing properties of a wheat flour was studied. Mixograph and dynamic oscillatory measurements showed significant increases in dough strength with the addition of 2 and 4% IPC, correlated to the water-insoluble fraction level of the IPC. The same IPCs were used at 2% level to supplement a wheat flour in making Chinese dry noodles. Measurable changes in both the raw and cooked noodle color were observed, and the change caused by addition of buckwheat IPC was substantial. Some of the IPCs caused an increase in cooking loss and only one caused an increase in weight, while increase in volume of the cooked noodles was not significantly affected. The changes in the rheological properties of cooked noodles due to addition of IPCs were measured. Overall, their effects were favorable, but the changes were statistically significant in only a few cases. The substantial dough-strengthening effect of the IPCs was hence not effectively translated into improved cooked noodle quality, and possible reasons for this are discussed.  相似文献   

12.
Data on the quality of durum wheat genotypes grown under eight environments (site-year combinations) were evaluated to determine the relative effects of genotype and environment on quality characteristics associated with gluten strength, protein content, and pasta texture. The 10 durum wheat genotypes assessed in this study represented a range of gluten strength types from the very strong U.S. desert durum genotype, Durex, to the medium strength Canadian genotype, Plenty. Considerable genetic variability was detected for all quality characteristics studied. Genotype-environment interaction was significant for all quality parameters evaluated, with the exception of mixograph development time. Genotypeenvironment interaction was most important in determining protein content and least important in determining gluten index, gluten viscoelasticity, and SDS sedimentation volume. The nature of the genotype-environment interaction was evaluated by determining the number of significant crossover (rank change) interactions. There was at least one significant crossover interaction between pairs of genotypes and environments for five of eight quality traits tested. Of 45 genotype pairs, eight and six showed significant crossover interactions for protein content and pasta disk viscoelasticity, respectively. Significant crossover interactions were at least partially due to the differential response of Canadian genotypes as compared with U.S. genotypes. With the exception of protein content and pasta disk viscoelasticity, our results suggest that among the selected sample of 10 genotypes, genotype-environment interactions were minor and due primarily to changes in magnitude rather than changes in rank.  相似文献   

13.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

14.
Addition of sorghum flour to wheat flour produces marked negative effects on rheological properties of dough and loaf volume. Although there are notable differences in the chemical composition of sorghum proteins (kafirins) compared with wheat gluten that might imply poor functionality in breadmaking systems, a larger constraint may be the unavailability of kafirins due to encapsulation in protein bodies. In this study, zein, the analogous maize prolamin to kafirin, was used to determine the potential effects of protein-body-free prolamins on dough rheology and baking quality of wheat-sorghum composite flour. Mixograms run at 35°C (above the glass transition temperature of zein) were significantly (P < 0.01) improved with addition of zein. Mixogram peak heights increased while mixing time decreased uniformly with addition of zein. Dough extensibility studies showed an increase in maximum tensile stress, while baking studies showed an increase in loaf volume with increasing amounts of added zein. These data are supported by a previous study showing that, in a model system, zein mixed with starch can form viscoelastic networks, and suggest that kafirin, if made available, could contribute to dough formation.  相似文献   

15.
Typical commercial bakeries in the United States are highly mechanized, mass-production facilities. U.S. hard wheat breeding programs use small-scale physical dough testing and pup loaf bake procedures to identify and select improved quality genotypes. The accuracy of such approaches in the prediction of commercial-scale quality performance is poorly understood. Samples from six hard red winter wheat cultivars grown in 11 locations over three harvest years were used to correlate grain hardness, small-scale test bakes, mixograph variables, and various measures of flour protein composition with quality assessments from commercial test laboratories. Samples were milled on both pilot- and small-scale mills. Protein content and 100-g pup loaf volume were more often significantly correlated with commercial test bake variables than all other small-scale variables. Stepwise multiple regression models explained, on average, ≈40% of the variation in commercial test bake procedures. Mixograph properties, pup loaf volumes and absorption, and flour protein content were the most frequent variables identified in model development. Pup loaf bake results on pilot- and small-scale milled flours were highly correlated. Differences in milling technology do not appear to be a significant source of error in relating small-scale test bakes to commercial quality.  相似文献   

16.
《Cereal Chemistry》2017,94(3):581-587
Wheat bran is a low‐cost by‐product abundantly produced by the wheat flour industry. As a staple food of China, Chinese steamed bread (CSB) represents about 40% of China's wheat consumption. This study investigated the effects of incorporating wheat bran into the CSB at different levels (5, 10, and 15%). The dough behavior was measured by analyzing rheological properties. Quality of CSB was analyzed from two perspectives: physical properties and nutritional quality. For physical properties, specific volume, loaf height, moisture, and texture were measured by 1 . The predicted glycemic response of the bread was analyzed by using an in vitro digestion method. The results illustrated that the incorporation of wheat bran into wheat flour reduced the extensibility of the dough, decreased specific volume, and increased bread hardness, gumminess, and chewiness. However, this study also showed that addition of wheat bran can decrease the predicted glycemic response of steamed bread by up to 39%.  相似文献   

17.
The role of lipid-binding proteins from wheat seed (puroindolines) on the breadmaking properties of wheat flour was investigated by determining the relationship between breadmaking quality and puroindoline content in samples of 32 wheat cultivars. An inverse relationship was mainly explained by the link between hardness and puroindoline contents. This link is in agreement with previous results which have shown a close structural identity between basic friabilins and puroindolines. Next, the effect of puroindolines in breadmaking was investigated by performing reconstitution experiments with two puroindoline-free hard cultivars of opposite quality (Florence Aurore and Ecrin) as indicated in the screened wheat sample. Addition of 0.1% puroindolines to these flours drastically modified both the rheological properties of doughs and the structure of the bread crumb. Puroindolines are essential to the foaming properties of dough liquor, and a close relationship was found between the fine grain crumb provided by reconstituted flours with puroindolines and the fine structure of corresponding dough liquor foams. The effect of puroindolines on bread volume was mainly related to the rheological properties of wheat doughs.  相似文献   

18.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

19.
Wheat grains were germinated in the dark at room temperature (24°C) for 1, 2, 3, 5, and 8 days. Germinated wheat grains were pearled in a Waring blender, and the outer bran layers were separated from the pearled grains. Breadmaking was performed with wheat flour and 10% of the outer bran layer. Breadmaking properties (bread height [mm] and specific volume [cm3/g]) were gradually enhanced by blending the germinated outer bran layers, and maximum specific volume was obtained after 5 days of germination. However, the improvement was lost after 8 days of germination. Rapid ViscoAnalyser (RVA) and Brabender Farinograph profiles of wheat flour and outer bran layers (10%) indicated that the maximum decrease of peak viscosity and increase of angle of tail were obtained after 3 and 5 days of germination, respectively. Those changes are presumed to be due to the action of enzymes found in the outer bran layers. Activities of α‐ and β‐amylase, lipase, protease, and xylanase in the outer bran layers were measured, and correlation coefficients (r) between breadmaking properties and peak viscosity (RVA), angle of tail (farinograph), and enzyme activities were calculated. These data suggest that xylanase and α‐amylase activities in the outer bran layers were highly related to the enhancement of the breadmaking properties.  相似文献   

20.
Influences of cultivar and nitrogen application on protein concentration and composition, and amount and size‐distribution of different protein components, were investigated in 10 spring wheat cultivars (Triticum aestivum L.) with widely varying gluten strength, grown under four nitrogen fertilizer conditions. The results showed that cultivar differences in gluten strength were determined by storage protein composition, differences in total amount of HMW glutenin subunits, the glutenin‐to‐gliadin ratio, and the relationship between SDS‐soluble and SDS‐insoluble protein polymers. Negative correlations were found between protein parameters related to gluten strength and bread volume. No cultivar stability for gluten strength in relation to differences in nitrogen application was found. Thus, the gluten strength was influenced by the nitrogen application in all the investigated cultivars. Increased nitrogen supply correlated significantly to an increase in all protein components containing gliadins and glutenins, but not to those containing albumins and globulins. The increase in protein components containing gliadins and glutenins correlated significantly with an increase in protein concentration and bread volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号