首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The solvent retention capacity (SRC) test is a relatively new AACC Approved Method (56‐11) for evaluating soft wheat flour quality. The test measures the ability of flour to retain a set of four solvents (water, 50% sucrose, 5% sodium carbonate, and 5% lactic acid) after centrifugation. The objective of this study was to evaluate the utility of wheat meal sodium carbonate and lactic acid SRC tests and SDS sedimentation volume within three populations of soft spring wheat inbred lines as tools for selecting for improved flour SRC profiles, flour extraction, and cookie and pastry quality. The populations were derived from the crosses Vanna/Penawawa, Kanto 107/IDO488, and M2/IDO470 and were grown in replicated, irrigated trials in 2000 and 2001 near Aberdeen, Idaho. Within each of the three populations, wheat meal sodium carbonate SRC effectively predicted straight‐grade flour sodium carbonate (r = 0.69–0.81) and sucrose SRC (r = 0.74–0.84). Wheat meal sodium carbonate SRC also was negatively correlated with flour extraction and sugar snap cookie diameter. Wheat meal lactic acid SRC predicted straight‐grade flour lactic acid SRC in only one population. In contrast, SDS sedimentation volume predicted straight‐grade flour lactic acid SRC in all three populations (r = 0.74–0.93). Moreover, SDS sedimentation volume and wheat meal sodium carbonate SRC were independent in two of the three populations. This suggests that the SDS sedimentation and sodium carbonate SRC may measure different intrinsic characteristics. Therefore, a combination of sodium carbonate SRC and SDS sedimentation volume analyses of wheat meal may be an efficient approach to selecting toward target SRC profiles, increased flour extraction, and larger sugar snap cookie diameter in soft wheats.  相似文献   

2.
Nowadays in Argentina, cookies, crackers, and cakes are made of flour obtained from bread wheat with additives or enzymes that decrease the gluten strength but increase production costs. The present research work aims to study the relationship between flour physicochemical composition (particle size average [PSA], protein, damaged starch [DS], water soluble pentosans [WSP], total pentosans [TP], and gluten), alkaline water retention capacities behavior, solvent retention capacities profile (SRC) and cookie‐making performance in a set of 51 adapted soft wheat lines with diverse origin to identify better flour parameters for predicting cookie quality. Cookie factor (CF) values were 5.06–7.56. High and significant negative correlations between sucrose SRC (–0.68), water SRC (–0.65), carbonate SRC (–0.59), and CF were found, followed by lactic SRC that presented a low negative but significant correlation (r = –0.35). The flour components DS (r = –0.67), WSP (r = –0.49), and TP (r = –0.4) were negatively associated to CF. PSA showed a negative correlation with CF (r = –0.43). Protein and gluten were the flour components that affected cookie hardness, but no significant correlation were found with pentosan or DS content. A prediction equation for CF was developed. Sucrose SRC, PSA, and DS could be used to predict 68% of the variation in cookie diameter. The cluster analysis was conducted to assess differences in flour quality parameters among genotypes based on CF. Clusters 1 and 4 were typified by lower CF (5.70 and 5.23, respectively), higher DS, pentosan content, and SRC values. Cluster 2 with a relative good CF (6.47) and Cluster 3 with the best cookie quality, high CF (7.32) and low firmness, and the lowest DS, TP, WSP content, and sucrose SRC values.  相似文献   

3.
The impact of heat treating wheat flour (for 2 or 5 h at 80 or 100°C) on its functional properties was studied with solvent retention capacity (SRC) tests and related to changes in individual groups of flour constituents. Heat treatments increased the overall water retention capacity (from 55.6% for control flour to 62.4% for flour heated 5 h at 100°C) as well as sucrose SRC (from 85.0 to 113.5%), although no changes were observed in sodium carbonate SRC. The decrease in lactic acid SRC values (from 113.1 to 97.4%) indicated that heat treatment restricted swelling of the protein network. As deduced from a decrease in both the level of proteins extractable in sodium dodecyl sulfate–containing medium and the level of free sulfhydryl groups, the restricted swelling was related to protein cross‐linking within the flour particles. Such upfront polymerization prevented proper hydration and gluten network formation during mixing. Starch (swelling) properties were also affected by heat treatment. Finally, the impact of heat treatment on flour SRC profiles was comparable to that noted when chlorinating wheat flour.  相似文献   

4.
Tempering conditions of wheat grain change the quality of the flour, yet most experimental milling systems use a standard tempering without optimization. The effect of tempering condition on milling performance and flour functionality for soft red winter (SRW) wheat grain was tested by measuring flour yield, ash, polyphenol oxidase (PPO), and solvent retention capacity (SRC) in grain samples from three SRW cultivars (Roane, Cyrus, and Severn). Tempering was conducted with a full factorial design of initial wheat moisture, tempered wheat moisture, tempering temperature, and tempering time at two levels. Tempered wheat moisture had the largest effect on milling performance and flour functionality. Flour yield was more reduced for all samples tempered at 15% moisture than for samples tempered to 12% moisture. Flour quality of the 15% tempered sample was better than the 12% tempered samples due to less bran contamination as measured by flour ash and PPO. Increasing the tempering moisture increased flour sucrose SRC and lactic acid SRC but reduced sodium carbonate SRC for samples. Changing tempered wheat moisture changed flour yield and quality much more than did changing the length of time for tempering, the temperature at wheat is tempered, or differences in the initial moisture of the wheat before tempering. The last three effects could be used to improve flour yield in both the 12 and 15% tempered wheat treatment but the detrimental effects of these treatments on flour quality were minimal when combined with the 15% tempered wheat moisture treatment.  相似文献   

5.
End‐use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four U.S. regional nurseries. Selected parameters included test weight, kernel hardness, kernel size, kernel diameter, wheat protein, polyphenol oxidase activity, flour yield, break flour yield, flour ash content, milling score, flour protein content, flour SDS sedimentation volume, flour swelling volume, Rapid Visco Analyzer peak paste viscosity, solvent retention capacity (SRC) parameters, total and water‐extractable arabinoxylan (TAX and WEAX, respectively), and cookie diameter. The objectives were to model cookie diameter and lactic acid SRC as well as to compare exceptionally performing varieties for each quality parameter. Cookie diameter and lactic acid SRC were modeled by using multiple regression analyses and all of the aforementioned quality parameters. Cookie diameter was positively associated with peak paste viscosity and was negatively associated with or modeled by kernel hardness, flour protein content, sodium carbonate SRC, lactic acid SRC, and water SRC. Lactic acid SRC was positively modeled by break flour yield, milling score, flour SDS sedimentation volume, and sucrose SRC and was negatively modeled by flour protein content. Exceptionally high‐ and low‐performing varieties were selected on the basis of their responses to the aforementioned characteristics in each nursery. High‐ and low‐performing varieties exhibited notably wide variation in kernel hardness, break flour yield, milling score, sodium carbonate SRC, sucrose SRC, water SRC, TAX content, and cookie diameter. This high level of variation in variety performance can facilitate selection for improved quality based on exceptional performance in one or more of these traits. The models described allow a more focused approach toward predicting soft wheat quality.  相似文献   

6.
The solvent retention capacity test (SRC) was used to evaluate flour functionality for end use applications and select wheat for production of flour with required functionality, but there is little information about SRC test application on triticale flour quality. The ability of flour to retain a set of four solvents produces a flour quality profile for predicting bakery performance. The objective of this study was to evaluate the capacity of SRC and its micro test to determine the potential quality of 25 triticale flours, as well as studying the relationship between the SRC parameters and flour chemical composition. The SRC parameters of triticale flours were correlated with the flour components that have been proposed by the method: sucrose SRC‐pentosan (r = 0.57), carbonate SRC‐damaged starch (r = 0.80), lactic SRC‐glutelin (r = 0.42), water SRC‐all hydrophilic constituents (damaged starch [r = 0.72], protein [r = 0.61], glutelin [r = 0.66], pentosan [r = 0.46]). Triticale flours have shown higher water and sodium carbonate SRC, similar sucrose SRC, and lower lactic SRC values than published results of typical flours used for cookie production. Summarizing, the high level of association found between SRC and micro SRC parameters with flour composition and quality flour tests evidence that either the SRC profile or the micro test SRC could be used to determine the potential quality of triticale flours.  相似文献   

7.
The solvent retention capacity test (SRC) (AACC Approved Method 56‐11) of flour is used to evaluate multiple aspects of wheat (Triticum aestivum L.) quality including pentosan content, starch damage, gluten strength, and general water retention based on the ability of flour to retain a range of solvents. The objectives of this study were to evaluate the effects of grain production environment in general and crop irrigation and fertility management in particular on SRC of soft wheat flour, and to evaluate the ability of SRC to predict end‐use quality across diverse environments. Two soft white spring wheat cultivars ‘Pomerelle’ and ‘Centennial’ were produced in a range of irrigated and rain‐fed production environments. SRC profiles and milling and baking quality parameters were measured. In a two‐year study at Aberdeen, ID, with two late‐season irrigation management regimes and two crop nitrogen fertility treatments, only wheat genotype significantly affected flour SRC. In two‐year studies at Tetonia, ID, one conducted under rain‐fed conditions and the other under irrigation, additional fertilizer applied at anthesis did not affect SRC. Correlations among quality parameters were determined using the Aberdeen and Tetonia flour samples, as well as samples of the same genotypes grown in fertility trials under rain‐fed conditions at Havre and Bozeman, MT, and under irrigation at Bozeman. Patterns of correlations among SRC values were similar for both genotypes. Grain test weight was negatively correlated with sodium carbonate and sucrose SRC of both genotypes. Flour protein was strongly positively correlated with sucrose and lactic acid SRC of both genotypes. The optimal regression models for predicting sugar snap cookie diameter (AACC Approved Method 10‐52) as a function of protein, SRC, flour extraction, and kernel hardness were different for the two cultivars. SRC evaluations of flours from these trials were consistent with large genotype and environment effects, yet minimal genotype × environment interaction. This suggests that selection among genotypes within an environment will produce a gain‐from‐selection observable in multiple and diverse environments.  相似文献   

8.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

9.
This research aims to investigate the relationship between the solvent retention capacity (SRC) test and quality assessment of hard red spring (HRS) wheat flour samples obtained from 10 HRS cultivars grown at six locations in North Dakota. The SRC values were significantly (P < 0.05) correlated with flour chemical components (protein, gluten, starch, and damaged starch contents, except arabinoxylan); with farinograph parameters (stability [FST], water absorption, peak time [FPT], and quality number); and with breadmaking parameters (baking water absorption [BWA], bread loaf volume [BLV], and symmetry). Differences in locations and cultivars contributed significantly to variation in quality parameters and SRC values. Suitability of SRC parameters for discriminatory analysis of HRS wheat flour is greatly influenced by molecular weight distribution (MWD) of SDS‐unextractable proteins. SRC parameters, except for sucrose SRC, showed significant (P < 0.01) and positive correlations with high‐molecular‐weight (HMW) polymeric proteins in SDS‐unextractable fractions, whereas only lactic acid SRC exhibited significant (P < 0.01) correlations with low‐molecular‐weight polymeric proteins. HMW polymeric proteins also exhibited positive associations with FPT, FST, BWA, and BLV. The discrepant variation in association of SRC parameters with respect to MWD of SDS‐unextractable proteins could improve segregation of HRS wheat flour samples for quality.  相似文献   

10.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

11.
The solvent retention capacity (SRC) profile is useful for studying flour components contributing to end‐use functionality. The method tests four different solvents with 5 g of flour each. Because of the amount of grain (30–40 g) typically needed to produce 20 g of flour for the SRC test, the method is not well‐suited for assessing end‐use quality of early generation breeding material, where grain quantities are limited. The method was therefore modified to require only 0.2 g of ground wheat instead of 5 g of flour per SRC solvent. The small‐scale SRC results using whole meal had correlations of r = 0.86 for lactic acid, r = 0.85 for sodium carbonate, r = 0.78 for sucrose, r = 0.74 for sodium bicarbonate (the alkaline water retention capacity method) and r = 0.69 for water when compared with SRC values from full‐scale tests using 5 g of flour. Overall, cultivars with SRC values at the extremes of the distribution were in the same ranked order for the small‐ and large‐scale SRC test results. However, variation in ranked order of cultivars between test methods was detected among samples that were not at the extremes of the distribution. Traditionally, successful wheat breeding strategies involve eliminating or advancing lines from the extremes of the distribution to increase the proportion of desirable genotypes within breeding programs. Results indicated that advancing promising germplasm or eliminating germplasm with inferior end‐use quality potential is possible using the small‐scale SRC technique to evaluate early generation wheat breeding material, as a sort of breeding triage.  相似文献   

12.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

13.
The objective of this study was to observe the influence of differences in genotype (variety) and protein concentration on batter flow and pancake making performance of a collection of soft white winter wheats. Wheats were chosen to express contrasting absorption characteristics and oxidative gelation potentials. Pancakes were processed with two formulations, one (“old”) with egg, soy, and dairy and one (“new”) without. Pancake performance was compared with grain, milling, flour, solvent retention capacity (SRC), pasting, and oxidative gelation characteristics of the flours. Kernel texture, break flour yield, carbonate SRC, and lactic acid SRC were not significantly associated with pancake performance for either formulation. ANOVA showed that flour protein concentration had a dominant effect on pancake batter flow and dimensions. Flour protein concentration affected pancakes more than flour protein quality (lactic acid SRC). Water and sucrose SRCs and Rapid Visco Analyzer pasting temperature were negatively correlated with pancake batter flow and dimensions. Pasting temperature was significantly and positively correlated with flour protein, suggesting that correlations with pancake properties might be simply a cross‐correlation with protein concentration. Notably, and in contrast to our hypothesis, oxidative gelation potential had no relationship with pancake processing or quality.  相似文献   

14.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength.  相似文献   

15.
李曼  张晓  刘大同  江伟  高德荣  张勇 《核农学报》2021,35(9):1979-1986
为了确定评价弱筋小麦品质的核心指标,建立弱筋小麦品质评价体系,本研究以长江中下游麦区推广的9个弱筋品种为试验材料,连续进行4年种植试验,测定其籽粒蛋白质含量、籽粒硬度,湿面筋含量、面筋指数、沉淀值和溶剂保持力(SRC)等面粉理化指标,粉质仪和吹泡仪等面团流变学特性参数并制作曲奇饼干测试饼干直径、厚度等品质参数。结果表明,弱筋小麦多数品质性状受基因型和环境共同影响,其中蛋白质含量、硬度、沉淀值、水SRC、碳酸钠SRC、乳酸SRC、吹泡仪参数、粉质仪弱化度以及曲奇饼干直径、厚度均表现为基因效应大于环境效应;弱筋小麦的籽粒蛋白质含量、湿面筋含量、粉质仪吸水率、粉质仪形成时间、粉质仪稳定时间、粉质仪粉质质量指数在各品种间无显著差异;弱筋小麦的硬度、面筋指数、水SRC、碳酸钠SRC、吹泡仪弹性(P值)、吹泡仪弹性/延伸性(P/L值)、粉质仪弱化度在各小麦品种间差异显著(P<0.05),上述指标与曲奇品质呈显著或极显著相关性,可作为评价弱筋小麦品质的重要指标。优质弱筋小麦品质评价标准推荐为:硬度≤25,面筋指数≥80%,水SRC≤60%,碳酸钠SRC≤75%,吹泡仪P值≤40 mm、延伸性(L值)≥95 mm、P/L值≤0.45,75≤弱化度≤95。对连续种植4年的不同弱筋小麦品质性状进行聚类分析,发现扬麦13、扬麦9号、扬麦19为优质弱筋小麦。本研究结果为弱筋小麦品种选育提供了支撑。  相似文献   

16.
《Cereal Chemistry》2017,94(4):723-732
Blending wheat or flour to meet end‐use requirements is a critical part of the production process to deliver consistent quality products. The functionality of commercial Canadian hard red wheat flour (HWF) and soft red wheat flour (SWF) blends with ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 (HWF/SWF, w/w) was investigated with new and standard methods to discern which functional properties may be indicators of bread quality and processing performance. Rheological characteristics including farinograph water absorption behavior, dough development time (DT), stability, extensigraph extensibility, and gluten aggregation of wheat flours were significantly influenced by the proportion of HWF in blends of SWF and HWF (P < 0.05). The SWF content in the blends had negative linear relationships with the protein content, lactic acid solvent retention capacity, water absorption, and GlutoPeak peak torque. Polynomial relationships were observed for sodium dodecyl sulfate sedimentation volume, DT, stability, extensibility, resistance, GlutoPeak peak time, and bread loaf volume with the amount of SWF in blends. The results indicate that linear responses may be more closely tied to protein content, whereas polynomial responses may be more indicative of protein quality and baking performance. The GlutoPeak peak time was sensitive to the addition of HWF in the blends, showing a significant change in gluten aggregation kinetics between the 0 and 25% HWF samples. Principal component analysis (PCA) confirmed that GlutoPeak peak time was a significant factor in differentiating the 0% HWF. Protein secondary structures identified in the final baked bread were also PCA factors differentiating the 0% HWF sample. Although the 0% bread sample did not deviate from the observed polynomial trend for bread loaf volume, the differences in bread protein secondary structures may translate into differences in processing tolerance in commercial settings.  相似文献   

17.
Reduced amylose wheat (Triticum æstivum L.) produces better quality noodles and bread less prone to going stale, while little is known about the relationships between amylose content and the quality of soft wheat baking products such as sugar snap cookies (SSC) and Japanese sponge cakes (JSC). Near‐isogenic lines developed from wheat cultivar Norin 61, differing in their level of granule‐bound starch synthase (Wx protein) activity, were used to produce wheat grains and ultimately flours of different amylose contents. These were tested with regard to their effect on soft wheat baking quality and solvent retention capacities (SRC). Amylose content was strongly correlated to cookie diameter (r = 0.969, P < 0.001) and cake volume (r = 0.976, P < 0.001), indicating that the soft wheat baking quality associated with SSC diameter and JSC volume were improved by an incremental increases in amylose content. Among the four kinds of SRC tests (water, sodium carbonate, sucrose and lactic acid), the water SRC test showed the highest correlation with amylose content, SSC diameter, and JSC volume. When the regression analysis was conducted between the nonwaxy and partial waxy isogenic lines that are available in commercial markets, only water SRC was significantly correlated to amylose content (r = –0.982, P < 0.001) among of four SRC tests. This suggests that, unlike udon noodle quality, high‐amylose content is indispensable in improving soft wheat baking quality, a process requiring less water retention capacity.  相似文献   

18.
Kernel texture in wheat (Triticum sp.) is central to end‐use quality and utilization. Here we report the discovery of a novel soft kernel trait in soft white winter wheat (T. aestivum L.). Two heritable kernel phenotypes were selected among F3‐derived sibs, hereafter designated “normal soft” (wild‐type) and “super soft.” Normal soft lines exhibited single kernel characterization system (SKCS) hardness index (HI) values typical of soft wheat (HI ≈ 20), whereas the super soft lines were unusually soft (HI ≈ 5). Under some environments, individual super soft lines exhibited HI values as low as HI = –4. The super soft trait was manifested in reduced SKCS kernel texture and higher break flour yields, with some increase in sodium carbonate SRC (solvent retention capacity) values and sponge cake volumes. Straight‐grade flour yield, flour ash, milling score, and cookie diameter were largely unaffected. With the possible exception of the sodium carbonate SRC values, we observed no indication that the super soft trait conferred any negative aspects to commercial soft wheat quality. As such, the super soft trait may provide wheat breeders with new opportunities to modify the end‐use quality of wheat.  相似文献   

19.
The total protein of gluten obtained by the cold‐ethanol displacement of starch from developed wheat flour dough matches that made by water displacement, but functional properties revealed by mixing are altered. This report characterizes mixing properties in a 10‐g mixograph for cold‐ethanol‐processed wheat gluten concentrates (CE‐gluten) and those for the water‐process concentrates (W‐gluten). Gluten concentrates were produced at a laboratory scale using batter‐like technology: development with water as a batter, dispersion with the displacement fluid, and screening. The displacing fluid was water for W‐gluten and cold ethanol (≥70% vol, ‐12°C) for CE‐gluten. Both gluten types were freeze‐dried at ‐10°C and then milled. Mixograms were obtained for 1) straight gluten concentrates hydrated to absorptions of 123–234%, or 2) gluten blended with a low protein (9.2% protein) soft wheat flour to obtain up to 16.2% total protein. The mixograms for gluten or gluten‐fortified flour were qualitatively and quantitatively distinguishable. We found differences in the mixogram parameters that would lead to the conclusion of greater stability and strength for CE‐gluten than for W‐Gluten. Differences between the mixograms for these gluten types could be markedly exaggerated by increasing the amount of water to the 167–234% range. Mixograms for evaluation of gluten have not been previously reported in this hydration range. Mixograms for fortification suggest that less CE‐gluten than W‐gluten would be required for the same effect.  相似文献   

20.
Protein‐protein interactions between wheat flour and solvent‐extracted (SE) or nonsolvent extracted (NSE) texturized soy flours were compared. Doughs were prepared to contain varying ratios of texturized soy flour in combination with wheat flour. Sucrose esters (2.5%) were included in several formulations. Doughs were fractionated into soluble and insoluble fractions at pH 4.7 and pH 6.1. Fractions were dried, powdered, and analyzed using SDS‐PAGE and spectrophotometric techniques. Electrophoretic evaluation indicated interactions between wheat gluten proteins and texturized soy proteins in the absence of sucrose esters. Electrophoretic gels of the wheat‐soy flour mixtures maintained a characteristic soy protein band after acidification to the soy protein isoelectric point. Inclusion of sucrose esters increased the interaction. Texturization conferred effects similar to that of sucrose ester on both forms of lipid‐extracted soy. Sulfhydryl analyses using 7‐chloro‐4‐nitrobenzo‐2‐oxa‐4, 3‐diazole (NBD‐Cl) revealed no change in the relative amount of sulfhydryl groups present in doughs prepared from either the texturized soy flours or the doughs containing equal amounts of wheat starch. These data indicate that interactions between soy protein from texturized soy flours and wheat proteins are not covalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号