首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method to measure hardness and other viscoelastic properties of intact wheat kernels is presented. Wheat with 9.3% moisture showed high elastic behavior compared with wheat tempered at 22.5% moisture that showed a plastic behavior. Load‐deformation curves showed that bread wheat behaves as a more plastic material than durum wheat, which is a more elastic material. Yield point of all the wheat samples was ≈18.5 N, independent of wheat type and moisture content. The height of the wheat kernel increased linearly, and the compression area increased exponentially, with increasing moisture content. The modulus of elasticity of wheat ranged from 99.2 MPa for 22.5% moisture content to 394.8 MPa for 9.3% moisture content. Young's modulus range for soft wheat such as Salamanca, Saturno, and Cortazar cultivars was 232.2–308.5 MPa, as compared with Rayón bread wheat at 321.5 MPa and the Altar, Sofía, and Rafi cultivars of durum wheat that had elastic moduli of 438.7–485.8 MPa. The compression force and final stress decreased from 69.9 N and 40.1 MPa in soft wheat to 90 N and 78.9 MPa in durum, respectively. Total work range was 14.7 MPa/sec in soft wheat to 19.7 MPa/sec for durum wheat and, as expected, was higher in the durum and bread wheat than in soft wheat. The plastic part ranged from 2.4 MPa/sec in soft wheat to 0.6 MPa/sec in durum wheat.  相似文献   

2.
The stress relaxation behaviors of soft and bread‐type wheat kernels were studied using the generalized Maxwell model. The data showed two phases, a fast phase at short times of about 1.52–16.88 sec (τ1 and τ2) and a slow phase with longer times of about 81.28–793.81 sec (τ3 and τ4). The shorter decay of σ1 can be explained by very weak forces that affect mainly the rheological properties. The slow decay (σ4) located at longer relaxation times resulted from strong forces. The first derivative obtained from the stress relaxation curve of intact wheat kernels was quite similar in shape to the dough farinograms. The stress relaxation parameters showed differences in springs, relaxation times, and viscosities of bread wheat compared with soft‐type wheat kernels. The stresses σ1 and σ4 were correlated with wheat kernel, flour, rheological, and breadmaking properties; so especially were the elasticity of the spring (σ0) and viscosity of the fourth Maxwell element (η4), which were significantly correlated with all the quality properties, whereas σ2, σ3, η1, and η2 did not show correlation at all, except that η2 was correlated with falling number and volume of CO2.  相似文献   

3.
The precise knowledge of the kinetics of water transport in durum wheat endosperm is a prerequisite for the optimization of wheat processing techniques like pasta dough mixing on a fundamental basis. Pieces of endosperm were cylindrically cut, prepared from durum wheat kernels, and used to study the water uptake by applying a gravimetric method and magnetic resonance imaging (MRI). The total water uptake of endosperm cylinders at different soaking times was determined by gravimetric soaking experiments and revealed a swelling limit of ≈40 g/100 g wb after 60 min. With these results it was possible to estimate an apparent diffusion coefficient of water in durum endosperm by using numerical simulation based on a diffusion model (D25°C ~ 0.76 × 10–10 m2/sec). MRI was used to quantify the water distribution in the endosperm cylinders over time at excess and limited water conditions. The calibration of MRI for the quantification of local and time‐dependent water contents was successful by correlating the spin‐spin relaxation time (T2) with the water content of calibration samples at intermediate moisture levels (19–45 g/100 g wb). Water content maps were generated and showed the kinetics of water distribution inside the endosperm cylinders up to equilibrium conditions. The water uptake of the endosperm cylinders over time, as measured by MRI, fitted well to the water uptake as determined gravimetrically in soaking tests, which validated the applied MRI calibration and measurement procedures. The results allow the quantitative prediction of water transport properties of durum wheat endosperm during moistening procedures.  相似文献   

4.
A rapid, simple method was developed to prepare small, parallelepipedal test samples of endosperm of wheat, corn, and rice grains. Compression tests performed on endosperm samples revealed the following mechanical properties: modulus of elasticity (E, GPa), breaking stress (σrup, MPa), and maximum breaking strain (∊rup, %). All tests were performed on several endosperm test samples of each cereal species. The results displayed good repeatability and several significant differences in the mechanical behavior of different endosperm structures, especially among soft, hard, and durum wheats. Rice and corn endosperm displayed mechanical behavior similar to that of durum wheat endosperm. The method proposed appears to be sufficiently sensitive and repeatable for studying the incidence of hardness and vitreousness of cereal grain endosperm in relation to its suitability for milling.  相似文献   

5.
The material properties of wheat grain endosperm are central to its processing and end‐use quality. The preparation of geometrically‐defined endosperm specimens free of bran, germ, and pigment strand can facilitate the objective study of endosperm material properties. This study was conducted to characterize the material properties of wheat endosperm from two soft, two hard, and one durum wheat varietal samples. Additionally, each varietal sample was sorted according to vitreous or mealy kernel type. Endosperm ‘bricks’ approximately 0.76 × 2.08 × 1.06 mm were prepared using an abrading (Kernel Sanders, KS) device. Bricks were tested in compression using a texture analyzer (TA.XTPlus). Stress‐strain curves were used to calculate failure strain, failure stress, failure energy, and Young's modulus. Additionally, the effect of brick aging up to one month, and changes in moisture content (freeze drying, oven drying, and equilibration to ≈10.5–11% mc) were studied. Intrakernel variation was assessed by preparing two sibling bricks (one from each cheek) from individual kernels. Failure strain, stress, and energy all had relatively high model R2 values (0.68, 0.79, and 0.75, respectively). The ANOVA model R2 for Young's modulus was 0.46. All models indicated variety as a highly significant source of variation in brick material properties. The effect of vitreous versus mealy kernel type was not consistent across varietal samples. Brick age and moisture content did not significantly affect brick material properties. Analysis of sibling bricks indicated that the magnitude of intrakernel variation was similar to that observed for individual varietal lots of uniform vitreous or mealy kernel type. Overall, failure strain provided a ranking and mean separation most consistent with kernel texture market class. The results obtained in the present study, although similar to other published reports do not closely agree with them on the material properties of wheat endosperm. Similarly, published results of material properties often differ considerably. The source of these discrepancies are at present unknown, but in some circumstances they may relate to specimen orientation relative to the source kernel, as there was evidence for anisotropic behavior. A companion study compares the variation in kernel texture obtained with the single kernel characterization system (SKCS) with that obtained here using bricks.  相似文献   

6.
Preharvest sprouted wheat is often characterized by the falling number (FN) test. FN decreases in preharvest sprouted wheat as enzymatic degradation of the starchy endosperm increases. Wheat with FN values <250–275 is often discounted at the time of sale. The intent of this investigation was to evaluate the effects of debranning or pearling on the flour quality traits of five samples of wheat rated as low, med‐low, medium, med‐high, and sound that exhibited a range in FN values of 62–425 sec. Replicates of each sample were pearled for 30, 60, and 120 sec to remove portions of the outer bran layers before milling. FN was highly correlated with α‐amylase activity (r > ‐0.97) in the med‐low, medium, and med‐high FN sample sets as pearling time increased. FN increased in the medlow, medium, and med‐high FN samples by 128, 123, and 80%, respectively, after 120 sec of pearling. Pearling had no effect on flour FN of the low FN sample but α‐amylase activity was significantly decreased. Pearling had little or no effect on FN and α‐amylase activity of the sound sample. FN was moderately to strongly correlated with Rapid Visco Analyser (RVA), alveograph, and farinograph properties, and poorly correlated with protein content, flour yield, and bread loaf volume. In subsequent breadmaking studies, bread loaf volume, and crumb characteristics of flour from pearled wheat were not significantly different from loaf volume and crumb characteristics of flour from the corresponding nonpearled wheat.  相似文献   

7.
The crumbliness of starchy endosperm and the resistance of bran are key characteristics that enhance milling behavior of wheat and are dependent on the genetic origin and moisture content of the grain. A method was developed to measure the mechanical properties of bran samples based on the measurement of tensile stress and strain. Tests conducted with this highly reproducible and sensitive method documented cultivar and moisture‐content effects (6.3, 13.8, and 18%, wb) on rheological behavior of wheat seed coats. A moisture‐dependent reduction in stress to fracture (‐15 to ‐30%) and in Young's modulus (‐45 to ‐55%) was quantified. An increase in deformation to fracture of seed coats was also correlated with bran size differences after milling. The energy required to fracture a sample (from 0.4 to 1.3 J/mm3) was considered the most valid of all presented parameters for assessing the milling behavior of wheat seed coats and the size of bran fractions.  相似文献   

8.
不同含水率对谷子籽粒压缩力学性质与摩擦特性的影响   总被引:2,自引:7,他引:2  
为了探明不同含水率谷子籽粒的物理机械性质,减少谷子籽粒在播种、碾米加工及储运等过程中受到压缩载荷及摩擦而产生的机械损伤,该文针对不同含水率的谷子籽粒进行压缩力学性质与摩擦特性试验。研究了谷子籽粒的挤压破碎过程,获得不同含水率谷子籽粒的力-位移(变形)曲线,破坏力、变形量及破坏能。随着含水率升高,破坏力减小,变形量和破坏能呈现先降低后升高的变化规律。同时采用赫兹接触理论,得到谷子籽粒单向表观弹性模量和许用挤压应力,结果表明二者都随含水率升高线性降低。分别测定了谷子籽粒与钢板和铝板间的滑动摩擦系数,随含水率升高,谷子与该2种材料的摩擦系数均增大,且与铝板的摩擦系数要高于钢板。根据试验结果,分别拟合得到了压缩和摩擦力学性能指标与谷子含水率的关系方程,为谷子播种、仓储、加工等装备设计及参数优化提供了基础依据。  相似文献   

9.
10.
The objective measurement of cereal endosperm texture, for wheat (Triticum spp. L.) in particular, is relevant to the milling, processing, and utilization of grain. The objective of this study was to evaluate the interlaboratory results of compression failure testing of wheat endosperm specimens of defined geometry. Parallelepipeds (bricks) and cylinders were prepared from individual soft and hard near‐isogenic wheat kernels and compressed in two orientations (parallel and perpendicular to the long brush‐to‐germ axis). Compression curves were used to derive failure stress, failure strain, work density (area under the curve), and Young's modulus. In all five laboratories, the ability to delineate hard from soft wheat endosperm material properties was quite high. Four laboratories compressed endosperm bricks in the same orientation, on edge; texture class (soft vs. hard) was consistently the greatest source of variation in analysis of variance models (F‐values from 417 to 1401, Young's modulus and failure stress, respectively). Failure stress was found to be the best overall means of measuring the difference in what is known in the vernacular as wheat hardness. Across laboratories, the absolute measures of all four material properties ranged on the order of about two‐ to threefold from low to high, although within a laboratory, results were highly consistent. Laboratory by texture class interaction was deemed to be of minor importance. Brick size and moisture content within the ranges tested were not major sources of variation, and cylinders prepared from endosperm produced results similar to those obtained from bricks. The results suggested that wheat endosperm might express some level of anisotropic behavior, as specimens compressed in the kernel orientation parallel to the long axis failed at lower strain and stress values, with lower work density, when compared with kernel orientation perpendicular to the long axis. A key feature of interlaboratory variation was identified as being instrument rigidity, a subject of ongoing research. In conclusion, the preparation of endosperm specimens of defined size and shape, in combination with compression failure testing at low moisture content (<18%), is useful for objectively delineating the phenomenon known as hardness. The study presented here will advance our ability to objectively measure cereal grain texture and the material properties of endosperm.  相似文献   

11.
Flour milling separates endosperm from bran through repeated roller milling and sifting, in which the size distribution of particles produced by the initial breakage of the wheat kernels critically affects the process. The double normalized Kumaraswamy breakage function (DNKBF), previously developed to describe wheat breakage during roller milling, was extended to refine the modeling of the effect of roll gap on breakage. The DNKBF describes two populations of particles arising from roller milling of wheat, a narrow peak of mid‐sized particles and a wider distribution of both small and very large particles. A new dataset was obtained from milling a set of wheat samples bred to give a range of shapes by cross‐breeding a conventional wheat, Cappelle, with an almost spherical wheat, Triticum sphaerococcum. A residual analysis showed a statistically significant effect of kernel shape on breakage using this new dataset. This analysis supports earlier suggestions that more elongated kernels break to give slightly larger particles than more spherical kernels of equivalent hardness, because of the relatively greater bran content of elongated kernels. The extended DNKBF was also used to model effects of moisture content, showing a distinct disjunction at around 16% moisture that aligns with commercial practice for wheat milling.  相似文献   

12.
Wheat product quality is related to its physicochemical properties and to the viscoelastic properties of the kernel. The aim of this work was to evaluate the viscoelastic properties of individual wheat kernels using the uniaxial compression test under small strain (3%) to create experimental conditions that allow the use of the elasticity theory to explain the wheat kernel viscoelasticity and its relationships to physicochemical characteristics, such as weight tests, size, and ash and protein contents. The following viscoelastic properties of the kernels of hard and soft wheat cultivars at two different moisture contents (original and tempered at 15%) were evaluated: total work (Wt), elastic work (We), plastic work (Wp), and modulus of elasticity (E). There was a significant decrease in Wt as the moisture content increased. In the soft wheat Saturno, Wt decreased 80% (from 0.217 to 0.044 N·mm) as the moisture content increased. Individual wheat kernels at their original moisture content showed higher We than under the tempered condition. Wp increased as the moisture content increased. E decreased as the moisture content increased. The soft wheat Saturno showed the highest decline (54.9%) in E (from 14.18 to 6.39 MPa) as the moisture content increased. There were significant negative relationships between the viscoelastic properties and the 1,000‐kernel weight and kernel thickness. The uniaxial compression test under small strain can be applied to evaluate the viscoelastic properties of individual wheat kernels from different classes and cultivars.  相似文献   

13.
Measuring fundamental mechanical parameters such as Young's modulus and critical stress is a straightforward and valid approach to evaluating the physical texture of breadcrumb. The objectives of this study were to evaluate whether such fundamental mechanical properties could be measured by indentation techniques such as the AACC crumb firmness method, and then to alter breadmaking conditions so as to model the relationship between these indentation mechanical properties as a function of crumb moisture content and crumb density. Bread was baked according to a short dough process using Canadian western red spring (CWRS) wheat flour. Factors considered in the design of experiments were proofing time, water absorption, crosshead speed, and indenter diameter. Young's modulus and critical stress, measured with 12‐ and 20‐mm cylindrical indenters, were well covalidated with those obtained from a standard compression test. With increases in proofing time and water absorption, a more porous and compliant bread texture led to decreasing Young's modulus and critical stress. Our results revealed a good mapping of mechanical properties to crumb moisture content and density that were correlated to breadmaking conditions, thus permitting more precise prediction of the mechanical properties that determine bread texture.  相似文献   

14.
玉米应力裂纹的显微分析   总被引:7,自引:1,他引:7  
观察了3种应力裂纹类型(单裂、双裂、龟裂)玉米的内部显微结构和应力裂纹产生的位置、数量、宽度,分析了应力裂纹在胚乳中扩展的情况以及应力裂纹对胚乳结构产生的影响。裂纹的类型不同,裂纹的形态、数量及大小亦不同。应力裂纹生成在粉质胚乳的中心部位,沿淀粉颗粒的边缘向外扩展。应力裂纹是内部裂纹,只能扩展到种皮附近,接近糊粉层。  相似文献   

15.
Popping characteristics, specifically expansion volume and popping time, were studied for damaged popcorn. A single variety of commercial undamaged yellow popcorn was separated into four size fractions (D < 4.36, 4.36 < D < 5.16, 5.16 < D < 5.95, and D > 5.95 mm) by screening with round-hole sieves. Kernels were damaged using a razor knife by either slicing a 2-mm diameter piece of the endosperm or the germ or by cutting through the pericarp and seed coat into the endosperm or the germ ≈2 mm. A total of five combinations of location and damage were studied (tip cap removed, side cut, side sliced, germ cut, and germ sliced) for each kernel size. A control sample with no damage was also analyzed for each size fraction. All of the damaged kernels (regardless of type of damage) popped, but they had expansion volumes 9.1–47.5% smaller than those of undamaged kernels. The expansion volume of damaged kernels increased by 52.5–85.7%, depending on the damage, when the size of the kernel increased from <4.36 mm to >5.95 mm. Removing the tip cap and slicing through the germ caused less loss of expansion volume than did other types of damage. Damaged popcorn kernels had faster popping times (12.2–24.0 sec) than did undamaged kernels (30.9–34.6 sec). Popping times increased with increasing kernel size for all types of damage.  相似文献   

16.
The endosperm and bran of a wheat grain have different mechanical properties and break differently under the same stresses. Stress‐strain analysis was used to model the factors affecting wheat kernel breakage during milling using fluted rolls. The planes of principal compressive and tensile stress and the maximum shear stresses, along which the kernel is most likely to be broken, were calculated for a sharp‐to‐sharp roll disposition. With the occurrence of compressive stress in the horizontal direction and shear stress in the vertical direction, a kernel tends to break along a principal tensile stress plane because the tensile strength of the endosperm is much smaller than its compressive strength. The model presented quantifies the mathematical relationship of three design and operational factors affecting the principal stresses and the maximum shear stresses: roll gap, differential, and roll diameter. High‐speed video was used to observe wheat breakage events during milling; the results show consistency with the theoretical analysis.  相似文献   

17.
Spelt wheat seeds (Triticum aestivum subsp. spelta cv. Ostro) were used to obtain white spelt flour (64.5% yield), wholemeal spelt flour (100% yield), and scalded spelt wheat kernels. From these materials, white spelt wheat bread (WSB), wholemeal spelt wheat bread (WMSB), and spelt wheat bread with scalded spelt wheat kernels (SSKB) were made and were compared to the reference white wheat bread (WWB). The spelt wheat flours and breads contained more proteins in comparison to wheat flour and bread. Among the samples the highest rate of starch hydrolysis was noticed in WSB. During the first 30 min of incubation this particular bread was shown to have significantly more (P < 0.05) rapidly digestible starch than the WMSB and later on also more starch than in WWB and SSKB, respectively. The WMSB had the lowest hydrolysis index (HI = 95.7). However, the result did not differ significantly from that in the reference common wheat bread. On the other hand, the most refined spelt wheat flour resulted in a bread product (WSB) that was statistically withdrawn (P < 0.05) as one with the highest HI (112.6).  相似文献   

18.
The mechanical, physical, and biochemical characteristics of mealy and vitreous endosperm were investigated. Endosperm were obtained from four durum wheat cultivars grown under different nitrogen fertilization designs. The textural properties and the density of the endosperm were measured on hand‐shaped parallelepiped endosperm samples. Endosperm protein content and composition and also gliadin composition were investigated by HPLC. Mechanical tests showed that mealy and vitreous endosperm differed in hardness and vitreousness. Vitreousness increased with nitrogen fertilization supply whereas there was no variation among the different cultivars. Hardness seemed to be linked to genotype and insensitive to nitrogen supply. From this result, we concluded that hardness and vitreousness are not related. Endosperm protein content and gliadin‐to‐glutenin ratio were related to nitrogen supply and increased especially when nitrogen supply was applied at flowering. At the same time, endosperm vitreousness increased. Further biochemical analyses were performed on 270 kernels, mealy or vitreous, hand‐picked from 148 different crops. Results showed that protein content of vitreous endosperm exceeded 9.7% in >90% of the cases. The glia/glu ratio was a less accurate predictor of kernel vitreousness, indicating that, by itself, it cannot account for the change in kernel vitreousness. Endosperm vitreous texture would rise above a threshold content of 9.7% protein within the endosperm.  相似文献   

19.
The current wheat milling process separates bran from endosperm by passing tempered wheat kernels through successive break rolls and sifters. Using hydrolytic enzymes during tempering degrades bran and aleurone layers and can improve milling efficiency and yield. This study was conducted to evaluate the effects of chemical and enzymatic treatments of wheat kernels before milling on physical and milling characteristics of the resulting wheat and flour quality. Hard wheat kernels were soaked in dilute acid or water and dried back to original moisture before being tempered with enzymes in water. Kernel physical and milling characteristics (600 g) were evaluated. Dilute acid soaking did not affect the 1,000‐kernel weight and diameter but softened treated kernels. When treated kernels were pearled, bran removal was mostly from ends; and the reducing sugar content in enzyme‐treated bran was significantly higher than the control. Compared with the control, acid‐soaked enzyme‐tempered kernels showed small but significant improvement in straight flour yield, with virtually no difference in protein content, and flour color. Chemical and enzyme treatment resulted in higher ash in flour. These differences were not seen in milling of larger batches (1,500 g) of kernels.  相似文献   

20.
Broken corn created by grounding sound corn kernels was added back at levels of 0, 4, 8, 12, or 16%, by weight, to whole kernels of three corresponding hybrids: FR27 × FRMo17 (a soft endosperm corn), FR618 × FR600 (amedium‐hard endosperm corn), and FR618 × LH123 (a hard endosperm corn). The samples had been dried from 28% moisture content to 15% moisture content either by using ambient air at ≈25°C or at 110°C. Samples were steeped for 36 hr at 52°C in 0.15% sulfur dioxide and 0.5% lactic acid steeping solution. The steepwater characteristics, such as water absorption, solids and protein content in the steepwater, and steepwater pH, were measured by periodic sampling and analyzed. Broken corn level has a significant effect on the amount of solids released during steeping and steepwater protein content for all samples. Both steepwater solids and protein content increased linearly as broken corn content increased. Corn drying temperature, kernel hardness, and interactions between drying temperature and kernel hardness has a significant effect on steepwater solids and protein content and steepwater pH in both broken and unbroken corn. Corn dried at low temperature released more soluble solids and protein into the steepwater than corn dried at high temperature. Soft endosperm and medium‐hard endosperm corn released more soluble solids and protein into the steepwater than hard endosperm corn. Soft endosperm corn resulted in a higher steepwater pH than medium‐hard and hard endosperm corn. No significant effect of broken corn content on final moisture content of steeped corn and steepwater pH was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号