首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Overgrazing contributes to rangeland degradation altering plant community composition, erosion and biodiversity. Little unanimity in the literature exists on the effects of livestock grazing on soil carbon and biodiversity, in part, due to uncontrolled grazing pressure from native and feral animals. Paired paddock contrasts at three, long‐term (>8 years) study locations in the southern Australian rangelands were used to examine the effects of managing grazing intensity through the use of exclusion fencing and rotational grazing on soil organic carbon (SOC), soil nitrogen (TN), ground cover and biodiversity (flora and invertebrates). Grazing management had no effect on SOC or TN on grey soils (Vertisols), but for red soils (Lixisols), significantly higher levels of SOC were found for both the 0 to 5 and 5 to 10‐cm soil depths (0·3% and 0·27% respectively) and associated with increased TN. We found strong and consistent relationships among SOC and higher perennial (p < 0·001), higher litter (p < 0·05) cover and close proximity to trees (p < 0·05). Managing grazing intensity resulted in significantly higher perennial ground cover (p < 0·001) on Vertisols (8·9 to 11%) and Lixisols (12·5 to 15%) and higher plant diversity (both native and exotic) but negatively impacted invertebrate diversity, indicating trade‐offs between production and resources. We provide evidence that the effects of grazing management on SOC are mediated by ground cover and increased organic matter supply and/or reduced soil carbon redistribution (erosion), which indicates that the management of grazing intensity may provide a tool to avoid soil carbon loss in rangelands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non‐significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha?1, respectively. Home garden significantly differed (p ≤ 0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land ≈ grazing land ≈ cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland.  相似文献   

4.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

5.
Agricultural soils are considered to have great potential for carbon sequestration through land‐use change. In this paper, we compiled data from the literatures and studied the change in soil organic carbon (SOC) following the ‘Grain‐for‐Green’ Programme (GGP, i.e., conversion from farmland to plantation, secondary forests and grasslands) in China. The results showed that SOC stocks accumulated at an average rate of 36·67 g m−2 y−1 in the top 20 cm with large variation. The current SOC storage could be estimated using the initial SOC stock and year since land use transformation (Adjusted R2 = 0·805, p = 0·000). After land use change, SOC stocks decreased during the initial 4–5 years, followed by an increase after above ground vegetation restoration. Annual average precipitation and initial SOC stocks had a significant effect (p < 0·05) on the rate of change in SOC, while no significant effects were observed between plantation and natural regeneration (p > 0·05). The ongoing ‘Grain‐for‐Green’ project might make significant contribution to China's carbon sequestration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

7.
Soil organic carbon (SOC) density was researched in southern NingXia with five different land uses: shrubland, farmland, grazing grassland, orchard, and artificial grassland. The results have shown that (1) content of SOC in soil 0–20 cm deep was greatest for grazing grassland and less for bush forestland, farmland, artificial grassland, and orchard; (2) content of SOC of bush forestland and orchard decreased slowly as depth of profile increased, whereas SOC of farmland, grazing grassland, and artificial grassland decreased fast; (3) SOC density of grazing grassland and farmland was greater than the bush forestland, artificial grassland, and orchard; and (4) the establishment and development of C. korshinski on eroded soil resulted in significant improvement of SOC density.  相似文献   

8.
Soil organic carbon (SOC) is subject to relatively rapid changes. In grasslands soils, the management system influences these changes. Therefore, these soils play a crucial role in climate change mitigation. Current research has developed strategies and methodologies to help us understand their role as a carbon sink. In this study, the SOC and total nitrogen contents and stocks (SOC‐S) and their variation with depth were evaluated in annual crop rotations (cereal–fallow). Fifty soil profiles were sampled in the Los Pedroches Valley (southern Spain). This area consists of Mediterranean open rangelands—treeless grasslands with cereal–fallow rotation, under two management systems: long‐term (20 years) organic farming (OF) and conventional tillage (CT). The studied soils were Cambisols (CM), Leptosols (LP) and Luvisols (LV). The objective of this research was to determine any management system effects (OF vs CT) on SOC and total nitrogen contents and stocks and their variation with profile depth. It was observed that SOC concentration decreased with depth (Ah–Ap > Bw > C). The SOC concentration was higher in the top soil for all studied soils in OF compared with CT. The highest totals of SOC‐S were found in LV‐OF (66·01 Mg ha−1) and the lowest in LP‐CT (21·33 Mg ha−1). Significant differences (p < 0·05) between soils types and management practices were found in carbon stocks, increasing the SOC‐S in OF compared with that in CT in all studied soils; this increase was 75·25%, 85·73% and 234·88% for CM, LV and LP, respectively. The results indicated that management practices significantly influence SOC‐S in the Los Pedroches Valley and, consequently, OF in annual crop rotations (cereal–fallow) is an excellent alternative to CT that increases the SOC content in Mediterranean open rangelands—treeless grasslands environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Soil organic matter (SOM) changes affect the CO2 atmospheric levels and is a key factor on soil fertility and soil erodibility. Fire affects ecosystems and the soil properties due to heating and post‐fire soil erosion and degradation processes. In order to understand fire effects on soil organic carbon (SOC) balance research was undertaken on a fire‐prone ecosystem: the Mediterranean maquia . The spatial distribution of SOC was measured in a Burnt site 6 months after a wildfire and in a Control site. Samples were collected at two different depths (0–3 and 3–10 cm) and SOC was determined. The results show that 41·8 per cent of the SOC stock was lost. This is due to the removal of the burnt material by surface wash. No significant differences in SOC content were found for the subsurface samples between burnt and control plots. Those results show that ashes and charcoal are transported by runoff downslope and are subsequently deposited in the valley bottom and this is the key process that contributes the burial of SOC after a forest fire. SOC redistribution by water erosion is accelerated after forest fires and contribute to the degradation of soils located at the upper part of the hillslopes but causes the enrichment with SOM of the soils located at the valley bottom. Buried SOC in the bottoms valley terraces will contribute to the sequestration of carbon for longer. Conservation of abandoned terraces is a key policy to avoid land degradation and climate change. Copyright © 2010 John Wiley & Sons Ltd.  相似文献   

10.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Particulate organic matter (POM) plays important role in soil organic carbon (SOC) retention and soil aggregation. This paper assesses how quality (chemical composition) of four different‐quality organic residues applied annually to a tropical sandy loam soil for 10 years has affected POM pools and the development of soil aggregates. Water‐stable aggregate size distribution (>2, 0·25–2, 0·106–0·25 mm) was determined through wet sieving. Density fractionation was employed to determine POM (light—LF, and heavy—HF fractions, 0·05–1 mm). Tamarind leaf litter showed the highest SOC (<1 mm) accumulation, while rice straw showed the lowest. LF‐C contents had positive correlations with high contents of C and recalcitrant constituents, (i.e. lignin and polyphenols) of the residues. Dipterocarp, a resistant residue, showed the highest LF‐C, followed by the intermediate residues, tamarind, and groundnut, whereas HF was higher in groundnut and tamarind than dipterocarp residues. Rice straw had the lowest LF‐ and HF‐C contents. Tamarind had the highest quantity (51 per cent) of small macroaggregates (0·25–2 mm), while dipterocarp had the most (2·1 per cent) large macroaggregates (>2 mm). Rice straw had the lowest quantities of both macroaggregates. Similar to small‐sized HF (0·05–0·25 mm), small macroaggregates had positive correlation with N and negative correlation with C/N ratios, while large macroaggregates had positive correlations with C and recalcitrant constituents of the residues. Tamarind, with intermediate contents of N and recalcitrant compounds, appears to best promote small macroaggregate formation. Carbon stabilized in small macroaggregates accounted for the tamarind treatment showing the largest SOC accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Dehydrogenase enzymes significantly mediate biological oxidation of organic compounds in soil. Dehydrogenase activities were determined in surface and subsurface horizons of 14 major hill land soils of the Appalachian Region. Soil samples were stored air‐dry (AD) and field‐moist at 4°C prior to determination of dehydrogenase activities. Each soil type had its own level of dehydrogenase activity. The average dehydrogenase activities of surface and subsurface horizons stored at 4°C were 1.4 and 3.3 times higher than soil samples stored AD. Mean dehydrogenase activities of surface horizons were 5.3 and 2.2 times higher than subsurface horizons stored at AD and 4°C, respectively. Depending on storage method (AD or 4°C) and type of horizon (surface or subsurface). dehydrogenase activities were either positively or negatively related to soil moisture status, organic C, total N, soil texture, and forms of ? and S. Most of these relationships were nonsignificant. Dehydrogenase activities were positively related to exchangeable bases. CEC, and ratio of Mg/Mg+Ca; however. the relationships were mostly significant in surface horizons.  相似文献   

13.
Visible and near infrared spectroscopy (vis‐NIRS) may be useful for an estimation of soil properties in arable fields, but the quality of results are often variable depending on the applied chemometric approach. Partial least squares regression (PLSR) may be replaced by approaches which employ supervised learning methods or variable selection procedures in order to increase the proportion of informative wavelengths used in the estimation procedure, to reduce the noise of the spectra and to find the best fitting solution. Objectives were (1) to compare the usefulness of PLSR with either PLSR combined with a genetic algorithm (GA‐PLSR) or support vector machine regression (SVMR) for an estimation of soil organic carbon (SOC), total nitrogen (N), pH, cation exchange capacity (CEC) and soil texture for surface soils (0–5 cm, n = 144) of an arable field in Bangalore (India) and (2) to test and optimize different calibration strategies for GA‐PLSR for an improved estimation of soil properties. PLSR was useful for an estimation of SOC, N, sand and clay. In the cross‐validation (n = 96), accuracies of estimated soil properties generally decreased in the order GA‐PLSR > SVMR > PLSR. However, the order of estimation accuracies for the random validation sample (n = 48) changed to SVMR > GA‐PLSR > PLSR for SOC, N, pH, and CEC, whereas for clay the order changed to SVMR > PLSR > GA‐PLSR. A sequential procedure, which used the most frequently selected wavelengths of the GA‐PLSR runs, proved to be useful for an improved estimation of SOC and N. Overall, SVMR especially improved estimations of SOC and clay, whereas GA‐PLSR was particularly useful for SOC and N and it was the only approach which successfully estimated CEC in cross‐validation and validation.  相似文献   

14.
In the northern highlands of Ethiopia, establishment of exclosures to restore degraded communal grazing lands has been practiced for the past three decades. However, empirical data on the effectiveness of exclosures in restoring degraded soils are lacking. We investigated the influence of exclosure age on degree of restoration of degraded soil and identified easily measurable biophysical and management‐related factors that can be used to predict soil nutrient restoration. We selected replicated (n = 3) 5‐, 10‐, 15‐, and 20‐year‐old exclosures and paired each exclosure with samples from adjacent communal grazing lands. All exclosures showed higher total soil nitrogen (N), available phosphorus (P), and cation exchange capacity than the communal grazing lands. The differences varied between 2·4 (±0·61) and 6·9 (±1·85) Mg ha−1 for the total N stock and from 17 (±3) to 39 (±7) kg ha−1 for the available P stock. The differences in N and P increased with exclosure age. In exclosures, much of the variability in soil N (R2 = 0·64) and P (R2 = 0·71) stocks were explained by a combination of annual average precipitation, woody biomass, and exclosure age. Precipitation and vegetation canopy cover also explained much of the variability in soil N (R2 = 0·74) and P (R2 = 0·52) stocks in communal grazing lands. Converting degraded communal grazing lands into exclosures is a viable option to restore degraded soils. Our results also confirm that the possibility to predict the changes in soil nutrient content after exclosure establishment using regression models is based on field measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Under semiarid climatic conditions, intensive tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. There is a need for an agricultural management increasing soil organic matter. This paper presents the organic carbon (OC) and nitrogen (N) stocks, C:N ratio and stratification ratios (SRs) of these properties for olive groves soils under long‐term organic farming (OF), and conventional tillage (CT) in Los Pedroches valley, southern Spain. The results show that OF increased C and N stocks. The soil organic carbon (SOC) stock was 73·6 Mg ha−1 in OF and 54·4 Mg ha−1 in CT; and the total nitrogen (TN) stock was 7·1 Mg ha−1 and 5·8 Mg ha−1 for OF and CT, respectively. In the surface horizon (A: 0–16·9 cm in OF and Ap: 0–21·8 cm in CT) and Bw horizon (16·9–49·6 cm in OF and 21·8–56 cm in CT), SOC and TN concentrations and C:N ratios were higher in OF than in CT. Soil properties stratification in depth, expressed as a ratio, indicates the soil quality under different soil management systems. The SR of SOC ranged from 2·2 to 3·1 in OF and from 2·1 to 2·2 in CT. However, only SR2 (defined by Ap‐A/C) showed significant differences between CT and OF. The SR of TN showed similar trends to that of the SR of SOC. Organic farming contributes to a better soil quality and to increased carbon sequestration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Long‐term monitoring is needed for direct assessment of soil organic carbon (SOC), soil, and nutrient loss by water erosion on a watershed scale. However, labor and capital requirements preclude implementation of such monitoring at many locations representing principal soils and ecoregions. These considerations warrant the development of diagnostic models to assess erosional SOC loss from more readily obtained data. The same factors affect transport of SOC and mineral soil fraction, suggesting that given the gain or loss of soil minerals, it may be possible to estimate the SOC flux from the data on erosion and deposition. One possible approach to parameterization is the use of the revised universal soil loss equation (RUSLE) to predict soil loss and this multiplied by the per cent of SOC in the near‐surface soil and an enrichment factor to obtain SOC loss. The data obtained from two watersheds in Ohio indicate that a power law relationship between soil loss and SOC loss may be more appropriate. When measured SOC loss from individual events over a 12‐year period was plotted against measured soil loss the data were logarithmically linear (R2=0·75) with a slope (or exponent in the power law) slightly less than would be expected for a RUSLE type model. The stable aggregate size distribution in runoff from a plot scale may be used to estimate the fate of size pools of SOC by comparing size distributions in the runoff plot scale and river watershed scales. Based upon this comparison, a minimum of 73 per cent of material from runoff plots is deposited on the landscape and the most stable carbon pool is lost from watershed soils to aquatic ecosystems and atmospheric carbon dioxide. Implicit in these models is the supposition that water stable soil aggregates and primary particles can be viewed as a tracer for SOC. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Industrial activities can contribute to the accumulation of heavy metals in soils, which could potentially threaten public health and the environment. This research was conducted to investigate the relationships between pH and total organic carbon (TOC) with soil chemical parameters, including exchangeable and total Cu, Zn, Cd, Pb, K, and Mg concentrations in soils near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and non‐linear regression were used to find statistical relationships between pH, TOC, and the other soil properties studied. The results of correlation tests indicated that pH and TOC had strong relationships with most of the soil properties. The results of PCR [R 2 = 0·87, RMSE = 0·046] and non‐linear regression [R 2 = 0·91, RMSE = 0·041] (pH and the entire parameters), PCR [R 2 = 0·777, RMSE = 0·058] and non‐linear regression [R 2 = 0·871, RMSE = 0·046] (pH and the exchangeable parameters) to model the relationships between pH and soil chemical properties were promising and significant. Exchangeable heavy metal concentrations increased for pH > 5. Even though the relationships between TOC and heavy metals were significant, they were not as powerful as the relationships between pH and these metals. It was concluded that total metal concentrations in the study soils can be predicted by either pH or TOC. Metal mobility could most likely be controlled at the study site by manipulating soil pH and/or TOC. Finally, it is suggested that when there are financial and time limitations, assessment of total exchangeable metal concentrations using soil pH and/or TOC could be productive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Because of the important role of soil organic carbon (SOC) in nutrient cycling and global climate changes, there has been an interest in understanding how different fertilizer practices affect the SOC preservation and promotion. The results from this study showed that long‐term application of manure (21 years) could increase significantly the content of SOC, total nitrogen (N) and soil pH in the red soil of southern China. The chemical structure of SOC was characterized by using solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy, and the aromatic C, ratio of alkyl C : O‐alkyl C, aromaticity and hydrophobicity of mineral fertilizers N, P and K plus organic manure (NPKM) and organic manure (M) treatments were less than those of mineral fertilizer nitrogen (N) and mineral fertilizers N, P and K (NPK) treatments. Both poorly crystalline (Feo) and organically complexed (Fep) iron contents were influenced significantly (P < 0.05) by different fertilizers, and it was observed that NPKM and M treatments increased the non‐crystalline Fe (Feo‐Fep) content. There was a significant (P < 0.01) positive correlation between soil organic C and non‐crystalline Fe in both the surface (0–20 cm) and subsurface (20–40 cm) soils. The results suggested that non‐crystalline Fe played an important role in the increase of SOC by long‐term application of organic manure (NPKM and M) in the red soil of southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号