首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements in situ of the neutral composition and temperature of the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. The presence of many gases, incluiding the major constituents CO(2), CO, N(2), O, and He has been confirmed. Carbon dioxide is the most abundant constituent at altitudes below about 155 kilometers in the terminator region. Above this altitude atomic oxygen is the major constituent, with O/CO(2) ratios in the upper atmosphere being greater than was commonly expected. Isotope ratios of O and C are close to terrestrial values. The temperature inferred from scale heights above 180 kilometers is about 400 K on the dayside near the evening terminator at a solar zenith angle of about 69 degrees . It decreases to about 230 K when the solar zenith angle is about 90 degrees .  相似文献   

2.
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .  相似文献   

3.
Measurements of the composition, temperature, and diurnal variations of the major neutral constituents in the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Concentrations of carbon dioxide, carbon monoxide, molecular nitrogen, atomic oxygen, and helium are presented, in addition to an empirical model of the data. The concentrations of the heavy gases, carbon dioxide, carbon monoxide, and molecular nitrogen, rapidly decrease from the evening terminator toward the nightside; the concentration of atomic oxygen remains nearly constant and the helium concentration increases, an indication of a nightside bulge. The kinetic temperature inferred from scale heights drops rapidly from 230 K at the terminator to 130 K at a solar zenith angle of 120 degrees , and to 112 K at the antisolar point.  相似文献   

4.
Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.  相似文献   

5.
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.  相似文献   

6.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

7.
The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres.  相似文献   

8.
Observations of Venus made during 1967 and 1968 at a frequency of 15.4 gigahertz set an upper limits of 5 percent for the variation of brightness temperature with phase. This negative result appears to contradict earlier detections of a phase effect. By comparison with Virg A (3C 274), which has an assumed flux density of 29 x 10(-26) watt per square meter per hertz, the brightness temperature of Venus at this frequency is 485 + 60, -40 degrees K (mean error).  相似文献   

9.
Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.  相似文献   

10.
Thermal plasma quantities measured by, the retarding potential analyzer (RPA) are, together with companion Pioneer Venus measurements, the first in situ measurements of the Venus ionosphere. High ionospheric ion and electron temperatures imply significant solar wind heating of the ionosphere. Comparison of the measured altitude profiles of the dominant ions with an initial modlel indicates that the ionosphere is close to diffusive equilibrium. The ionopause height was observed to vary from 400 to 1000 kilometers in early orbits. The ionospheric particle pressure at the ionopause is apparently balanced at a solar zenith angle of about 70 degrees by the magnetic field pressure with little contribution from energetic solar wind particles. The measured ratio of ionospheric scale height to ionopause radius is consistent with that inferred from previously measured bow shock positions.  相似文献   

11.
Electric discharges between free-falling drops have been observed and studied quantitatively in the laboratory. These data and information from terrestrial thunderstorms suggest that augmentation of the UHF temperature of thunderstorms by discharges could amount to 117 degrees K. If similar discharges occurred in the atmosphere or on the surface (or in both regions) of Venus, 1.4 x 10(6) discharges per second per square meter would be required to produce the microwave temperature observed (approximately 650 degrees K). It is not probable that such radiation supplies the whole microwave temperature observed; some fraction must be true thermal radiation as described by Plummer and Strong (9), in which case the probable number of required discharges is reduced accordingly.  相似文献   

12.
The common ranges of pressure and temperature of the atmosphere of Venus measured last October establish the connection between the Soviet Venera 4 altitude scale and the United States Mariner V radial scale. But if the Venera 4 measurements extended to the surface, as claimed, this comparison implies a radius of the planet which is about 25 kilometers greater than the radius deduced from Earth-based radar data. This impasse has been resolved in favor of the smaller value by a new determination of the radius which is more direct than the method used in deriving the radar radius, and which involves concurrent ranging from Earth both to Mariner V near encounter and to the surface of Venus. It is concluded that neither spacecraft reported on atmospheric conditions near the level of the mean surface, but extrapolations of the measurements yield surface values for mid-latitudes of 100 atmospheres pressure (within a factor of 1.5) and 700 degrees K temperature (within 100 degrees ), in distinction to the Soviet values of 19+/-2 atmospheres and 544 degrees +/-10 degrees K. The higher values support radiometric and radar data on temperature and atmospheric absorption. It appears that the Soviet probe was not designed to work through such a thick atmosphere. A particularly simple (times two) ambiguity in the Venera 4 altimeter reading suggests itself, since this would bring all other data into excellent agreement and would explain the reason for the supposition that the probe reached the surface.  相似文献   

13.
The four Pioneer Venus entry probes transmitted data of good quality on the structure of the atmosphere below the clouds. Contrast of the structure below an altitude of 50 kilometers at four widely separated locations was found to be no more than a few degrees Kelvin, with slightly warmer temperatures at 30 degrees south latitude than at 5 degrees or 60 degrees north. The atmosphere was stably stratified above 15 or 20 kilometers, indicating that the near-adiabatic state is maintained by the general circulation. The profiles move from near-adiabatic toward radiative equilibrium at altitudes above 40 kilometers. There appears to be a region of vertical convection above the dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. This is where the 4-day wind is believed to occur. The temperature wave may be related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photographs.  相似文献   

14.
Use of Earth-based microwave data in extrapolating the atmospheric profile of Venus below the region probed by Mariner V and Venera 4 reveals an isothermal layer at 670 degrees +/- 20 degrees K that extends to an altitude of 7 +/- 2 kilometers. This model gives a value of 6054.8 kilometers for the radius of Venus, and agreement with brightness spectrum, radar cross sections, and results of microwave interferometry.  相似文献   

15.
An objective grating spectrometer on Mariner 10 has measured air-glow in the wavelength range 200 to 1700 angstroms. The data reveal the presence of significant concentrations of hydrogen, helium, carbon, and oxygen atoms in the upper atmosphere of Venus. A preliminary analysis of the hydrogen data indicates an exospheric temperature of 400 degrees K. There is evidence for intense air-glow emission at wavelengths longward of 1350 angstroms; the nature of this emission is unclear, but the radiation is spatially extensive and detectable on both day and night sides of the planet.  相似文献   

16.
The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.  相似文献   

17.
The solar flux radiometer aboard the Pioneer Venus large probe operated successfully during its descent through the atmosphere of Venus. Upward, downward, and net fluxes from 0.4 to 1.0 micrometers were obtained at more than 390 levels between 185 millibars (at an altitude of approximately 61 kilometers) and the surface. Fluxes from 0.4 to 1.8 micrometers were also obtained between 185 millibars and about the level at which the pressure was 2 atmospheres. Data from 80 to 185 millibars should be available after additional decoding by the Deep Space Network. Upward and downward intensities in a narrower band from 0.59 to 0.66 micrometers were also obtained throughout the descent in order to constrain cloud properties. The measurements indicate three cloud regions above the 1.3-atmosphere level (at an altitude of approximately 49 kilometers) and a clear atmosphere beneath that level. At the 67 degrees solar zenith of the probe entry site, some 15 watts per square meter are absorbed at the surface by a dark ground, which implies that about 2 percent of the solar energy incident on the planet is absorbed at the ground.  相似文献   

18.
Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.  相似文献   

19.
Abrupt changes in the amplitude of the magnetic fluctuations, in the field strength, and in the plasma properties, were observed with Mariner V near Venus. They provide clear evidence for the presence of a bow shock around the planet, similar to, but much smaller than, that observed at Earth. The observations appear consistent with an interaction of the solar wind with the ionosphere of Venus. No planetary field could be detected, but a steady radial field and very low plasma density were found 10,000 to 20,000 kilometers behind Venus and 8,000 to 12,000 kilometers from the Sun-Venus line. These observations may be interpreted as relating to an expansion wave tending to fill the cavity produced by Venus in the solar wind. The upper limit to the magnetic dipole moment of Venus is estimated to be within a factor of 2 of 10(-3) items that of Earth.  相似文献   

20.
The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号