首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
倒伏水稻的识别对灾后农业生产管理、灾害保险、补贴等工作有重要意义。为应用高分辨率遥感影像准确提取倒伏水稻面积,本文利用2019年9月27日获取的哨兵2号多光谱遥感影像,研究黑龙江省同江市倒伏水稻的光谱、纹理特征,并基于光谱与纹理特征建立倒伏水稻的遥感提取模型。研究结果表明水稻倒伏后可见光-近红外-短波红外等8个波段的反射率均升高,其中短波红外、红光和红边1等3个波段的反射率上升大于0.06。倒伏水稻的典型植被指数中,归一化植被指数、比值植被指数、增强植被指数和红边位置指数均降低,但差值植被指数升高。倒伏与正常水稻在红光、红边1和短波红外等3个波段的均值纹理数值差距明显,红光波段的纹理均值差异最大。利用归一化植被指数、地表水分指数、比值植被指数和差值植被指数以及红光波段的纹理均值构建决策树分类模型,监测结果表明农场内倒伏水稻分布较散,其西部和南部水稻受灾面积较大,北部受灾面积较小,中部偏北和东部基本未倒伏。将本文模型所提取的结果与实测面积对比,正常与倒伏水稻的面积识别误差分别为3.33%和2.23%。利用随机验证样本与模型验证结果进行混淆矩阵分析,倒伏水稻的用户精度和制图精度均为92.0%,Kappa系数为0.93。该方法能够适用于大区域倒伏水稻提取,可为高分辨率多光谱遥感数据调查水稻倒伏面积提供相关依据。  相似文献   

2.
基于无人机遥感多光谱影像的棉花倒伏信息提取   总被引:3,自引:1,他引:2  
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。  相似文献   

3.
水稻穗颈瘟作为稻瘟病的一种发病形式常以褐色斑点性状出现在水稻穗颈节部位,对稻穗颈瘟病害快速、无损的识别与分级评估一直是备受关注的研究课题。该研究以高寒地区粳稻大田试验为基础,利用无人机高光谱平台获取不同病害等级的水稻穗颈瘟冠层数据;分别以不同处理的光谱数据作为输入量,使用随机森林(Random Forest,RF)的方法进行建模,并结合水稻生理对各输入量的特征关联加以解释。结果表明:随着稻瘟病病害等级的提升,水稻冠层反射率整体呈现下降的趋势;植被指数组合(Combination of Vegetation Indices,CVIs)作为输入量建立起来的预测模型具有最高的精度,预测集精度达到90%,Kappa系数为0.86,能够解释穗颈瘟发生时所引起的植株整体生理参数综合变化的过程。该研究结果可填补无人机高光谱遥感监测大田穗颈瘟病和实验室穗颈瘟病光谱理论研究之间的空缺,为无人机高光谱遥感实现穗颈瘟病定量遥感监测与预警分级提供支持。  相似文献   

4.
农田水分胁迫是影响作物生长发育和产量品质的重要原因。及时准确地诊断作物水分胁迫状况,对于实现精准灌溉、提高作物抗逆性和产量等具有重要意义。为优化夏玉米水分胁迫诊断方法和提高诊断精度,该研究以夏玉米为对象,利用无人机搭载六通道多光谱传感器获取2022年夏玉米拔节期和抽雄期的遥感影像数据,且同步采集夏玉米气孔导度和表型参数数据,监督分类剔除冗余背景后使用灰度共生矩阵计算得到冠层植被指数和图像纹理信息,通过贝叶斯信息准则和全子集筛选法筛选出敏感的植被指数、图像纹理和表型参数及其组合,结合极限学习机、随机森林和反向传播神经网络3种机器学习方法构建夏玉米气孔导度预估模型,并基于最优气孔导度预估模型绘制夏玉米水分胁迫状况反演图。结果表明,多光谱图像的夏玉米冠层反射率与气孔导度呈弱负相关,植被指数和表型参数与气孔导度呈极显著正相关,不同波段的图像纹理均与气孔导度有较高的相关性,其中550 nm波段最佳。植被指数用于评估植被整体健康和水分状况,图像纹理用于捕捉作物空间分布、纹理和结构特征,表型参数用于立体反映作物生理和形态信息,它们在诊断作物水分胁迫的机理上具有互补性。基于植被指数、图像纹理和表型参数构建的反向传播神经网络模型是夏玉米水分胁迫诊断的最佳模型(决定系数为0.841,均方根误差为0.043 mol/(m2·s),平均绝对误差为0.034 mol/(m2·s) ),并显著改善了对气孔导度较低值的低估情况。绘制的夏玉米水分胁迫状况反演图呈现出广泛的应用潜力,能够便捷准确地诊断作物水分胁迫状况,以优化灌溉策略,调整资源分配。研究结果可为夏玉米的水分胁迫诊断提供一种可行而准确的方法。  相似文献   

5.
基于水稻干旱胁迫试验,采用ASD(Field Spec Pro FR2500)光谱辐射仪测定水稻拔节期和抽穗期不同时间尺度(10d、20d)干旱处理与对照(正常处理)的冠层光谱反射率,对干旱胁迫下水稻冠层光谱变化规律、植被指数、水分指数、导数光谱特征进行分析.结果表明:水稻拔节期和抽穗期干旱胁迫后冠层光谱反射率与对照(CK)相比,可见光、近红外波段反射率均显著减小,短红外波段反射率显著增加,导数光谱红边位置均向短波方向推移,红边面积和红边斜率均显著减少,复合构建的6种植被指数或水分指数呈下降趋势,四波段水分指数(SRND)、归一化差异红外指数(NDVII)下降幅度最大;与CK相比,拔节期干旱胁迫20d和抽穗期10d的水稻冠层对可见光、近红外波段的反射率极显著降低,对短红外波段反射率极显著升高,在此阶段红边特征参数、植被水分指数减少幅度最低.研究结果可为利用高光谱遥感技术快速无损监测水稻干旱灾害提供技术支持.  相似文献   

6.
分蘖期根外追肥是水稻生产的重要田间管理环节,也是水稻生长中的第一个需肥高峰期,追肥效果直接影响分蘖数以及中后期长势。为了探究利用无人机遥感构建施肥量处方图指导农用无人机对分蘖期水稻精准追肥,在保障水稻产量的前提下降低化肥施用量,该研究在水稻分蘖期追肥窗口期,利用无人机遥感诊断与农用无人机精准作业相结合,采用无人机高光谱技术建立水稻分蘖期施肥量处方图,结合农用无人机作业参数对待施肥地块进行栅格划分,确定精准施肥量,并通过农用无人机进行精准施肥。结果表明:利用特征波段选择与特征提取的方式在450~950nm范围内共提取5个水稻高光谱特征变量用于水稻氮素含量的反演;利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)构建的水稻氮素含量反演模型效果要好于极限学习机(Extreme Learning Machine,ELM)反演效果,模型决定系数为0.838;结合待追肥区域反演氮素含量(N_r),标准田氮素含量(N_(std))、氮肥浓度(p)、水稻地上生物量(B_(std))、水稻覆盖度(C_(std))、化肥利用率(k)及转化率(u)等构建了农用无人机追肥量决策模型,与对照组相比,利用该研究构建的处方图变量施肥方法使氮肥追施量减少27.34%。研究结果可为寒地水稻分蘖期农用无人机精准变量追肥提供数据与模型基础。  相似文献   

7.
利用无人机平台搭载多光谱传感器在农业监测上已经有一些应用,但是利用无人机多光谱影像估算作物叶绿素含量的研究较少,特别是融合无人机多光谱影像光谱信息和纹理信息估算马铃薯叶绿素含量的研究更是罕见。基于此,该文利用2018年北京小汤山基地马铃薯各个典型生育期的无人机多光谱影像及实测的叶绿素含量数据,首先提取多光谱影像植被指数和纹理特征等变量,然后分析其与叶绿素含量相关性,筛选出较优特征变量,并开展基于调整R2和K折交叉验证的全子集分析估算马铃薯叶绿素含量。最后将植被指数与纹理特征通过主成分融合构建一种新的综合指标估算叶绿素含量。研究发现:1)多光谱植被指数和纹理特征估算叶绿素含量模型,K折交叉验证均优于调整R2;2)整个生育期,综合指标模型决定系数比植被指数模型、纹理特征模型均有提升,且标准均方根误差均降低。综合指标估算模型较优,多光谱植被指数模型次之,纹理特征模型较差。该研究可为马铃薯生长营养监测提供一种可行的方法,对马铃薯的栽培种植管理具有指导意义。  相似文献   

8.
为实现利用水稻叶片光谱指数实时预测稻米蛋白质含量,该研究采集了不同年份中氮素、品种差异下寒地水稻主要生育期(T1拔节期、T2齐穗期、T3结实期)顶部3片叶(L1、L2、L3)的叶片光谱反射率,探究其变化规律以及光谱指数与稻米蛋白质含量的关系,并用P-k、均方根误差(Root Mean Square Error,RMSE)和对称平均绝对百分比误差(Symmetric Mean Absolute Percentage Error,SMAPE)对模型精度进行验证。结果显示:施氮量多则稻米蛋白质含量高,蛋白质含量高的稻米食味值评分低。提高氮肥投入量,叶片反射率在可见光区域内呈降低趋势,而在近红外平台叶片反射率上升。随着生育期的推进,可见光区域内的叶片反射率逐渐上升,叶片反射率在近红外平台表现出先增加后降低的趋势,其变化规律与蛋白质营养转运有着密切联系。对光谱指标和稻米蛋白质含量进行相关分析,T2时期的L2的光谱指数与蛋白质含量的相关性优于其他时期的叶片,其中T2时期L1叶ARI1指标((1/R550)-(1/R700))、L2叶CTR1指标((R695/R420))以及T3时期L3 叶Rg指标(绿光范围510~560 nm内的最大波段反射率)显示出与蛋白质含量良好的拟合关系,指标验证的P-k分别为0.01、0.01、0.03,RMSE分别为0.19、0.11、0.14,SMAPE分别为1.56%、1.24%、1.44%,其中以T2时期L2叶CTR1指标表现最优,蛋白质含量拟合方程R2为0.75。综上,借助CTR1指标能够实现快捷、无损和实时预测稻米蛋白质含量的目的,达到按质收获以及品质实时监测的要求,促进优质寒地水稻的可持续发展。  相似文献   

9.
基于HJ-1A/BCCD数据的玉米倒伏识别方法   总被引:2,自引:0,他引:2  
为快速获取大面积玉米倒伏灾情信息,以2012年台风"布拉万"过境导致大面积玉米倒伏的公主岭市为研究区,利用HJ-1A/BCCD数据,对受灾前后倒伏玉米和正常玉米之间的光谱差异进行分析,提取归一化植被指数(NDVI)、比值植被指数(RVI)、增强植被指数(EVI)、差值植被指数(DVI)及4波段光谱反射率主成分,结合地面调查构建基于二元Logistic回归的玉米倒伏识别模型,并进行精度评价和验证。结果表明:玉米倒伏后冠层光谱反射率在可见光-近红外波段均表现为增大,但植被指数减小;二元Logistic回归方法对玉米倒伏识别适用,所建模型中以4波段光谱反射率主成分构建的二元Logistic回归模型对玉米倒伏的识别效果最优,测试集上分类结果的准确率达到96.23%,NDVI和RVI模型次之,准确率为80%左右;将主成分模型应用于公主岭市倒伏玉米识别,结果与灾情实际情况基本一致。基于二元Logistic回归模型对玉米倒伏进行监测的思路和方法可为区域尺度玉米倒伏的多光谱遥感监测提供参考。  相似文献   

10.
基于Worldview-2影像的玉米倒伏面积估算   总被引:4,自引:5,他引:4  
为应用高分辨率遥感影像准确调查玉米倒伏面积,该文使用2012年9月14日获取的Worldview-2多光谱影像研究灌浆期倒伏玉米的光谱、纹理特征及其最优的面积估算方法。通过对影像进行大气校正后得到正常玉米和倒伏玉米的反射率,结果显示玉米倒伏后8个波段的反射率均升高,其中红边、近红外1和近红外2等3个波段的上升数值超过0.1。通过对反射率数据进行滤波得到正常、倒伏玉米的均值纹理特征,统计结果显示各波段纹理特征有差异,其中绿色、红边、近红外1及近红外2等4波段的均值纹理特征数值差距更明显。比较使用不同波段数量、特征及分类方法的倒伏面积估算值,结果表明基于最大似然分类法使用红边、近红外1和近红外2等3波段光谱反射率的倒伏面积估算方法最优,其最小误差为2.2%,最大误差为8.9%,平均误差为4.7%。该研究结果为应用高分辨率多光谱遥感数据调查玉米倒伏面积提供了相关依据。  相似文献   

11.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:17,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

12.
基于无人机图像分割的冬小麦叶绿素与叶面积指数反演   总被引:2,自引:1,他引:1  
叶绿素含量与叶面积指数是反映作物长势的重要理化参数,准确、高效定量估计小麦叶绿素含量与叶面积指数对于产量预测和田间管理决策具有重要意义,无人机(Unmanned Aerial Vehicle,UAV)遥感影像具有高空间分辨率的优势,被广泛应用于作物理化参数反演,但现有叶绿素含量与叶面积指数反演模型受土壤、阴影等背景噪声...  相似文献   

13.
基于小型无人机遥感的玉米倒伏面积提取   总被引:18,自引:10,他引:8  
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。  相似文献   

14.
基于无人机多光谱影像的完熟期玉米倒伏面积提取   总被引:5,自引:3,他引:2  
由于土壤、地形、水分以及耕作方式等存在的时空变异性,致使灾后完熟期玉米地块存在4类作物形态,包括叶片呈绿色的未倒伏玉米、叶片淡黄的未倒伏玉米、叶片淡黄的倒伏玉米、黑色阴影区域。为进一步提高现有倒伏玉米面积提取方法的精度,该文以黑龙江省国营农场典型玉米倒伏地块为研究区,获取无人机多光谱数据,对比4类作物形态的光谱、植被指数以及纹理特征差异,经特征筛选后,首先面向倒伏玉米提取构建了5种典型特征组合。然后针对植被指数特征、光谱和纹理特征组合采用最大似然法分类,最后对提取结果的精度进行评价和分析。结果表明:反射光谱特征或植被指数特征无法准确区分4类作物形态,提取的倒伏玉米面积偏差较大;多类纹理特征法所得结果最优,4类典型作物形态的识别平均误差为9.82%,倒伏面积提取的误差为3.40%,Kappa系数为0.84。该研究延展了纹理特征在倒伏玉米面积提取中的应用并对完熟期倒伏玉米识别具有重要的借鉴意义。  相似文献   

15.
农用无人机多传感器遥感辅助小麦育种信息获取   总被引:8,自引:10,他引:8  
为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。  相似文献   

16.
无人机遥感解析田间作物表型信息研究进展   总被引:7,自引:19,他引:7  
田间作物表型信息是揭示作物生长发育规律及其与环境关系的重要依据,传统的田间试验取样和车载高通量平台测定作物性状参数的方法耗时耗力,且空间覆盖不全,限制了作物科学研究的快速发展,而以无人机为代表的近地遥感高通量表型平台凭借机动灵活、成本低、空间覆盖广的优势成为获取田间作物表型信息的重要手段。该文根据国内外无人机遥感平台解析作物表型信息的最新研究成果,针对不同传感器类型分析了无人机遥感解析作物表型信息的应用及其不足,总结了遥感定量反演作物表型信息的方法体系,展望了无人机载遥感技术在作物表型信息解析方面的应用前景。该项研究成果对推广无人机遥感平台获取田间作物表型信息、提高复杂农田环境作物长势信息的解析和辨识能力具有重要意义。  相似文献   

17.
无人机可见光遥感和特征融合的小麦倒伏面积提取   总被引:3,自引:3,他引:0  
倒伏是造成小麦减产和品质下降的主要原因之一.为快速准确地提取小麦倒伏面积,给农业保险理赔及灾后应急处置提供数据支持,该研究采用无人机遥感平台获取小麦倒伏后的冠层红绿蓝(Red-Green-Blue,RGB)可见光图像,并进行数字表面模型(Digital Surface Model,DSM)图像提取,计算了过绿植被(Ex...  相似文献   

18.
无人机飞行高度对植被覆盖度和植被指数估算结果的影响   总被引:1,自引:1,他引:0  
将无人机与多种成像传感设备相结合可实现田间作物表型信息的全面获取。针对田间复杂环境下无人机搭载多种成像传感设备在不同飞行高度处提取的作物信息具有差异性的问题,本研究着重探究了无人机搭载两种成像传感设备获取图像时,不同飞行高度对估算植被覆盖度以及植被指数结果的影响。首先为防止外界环境变化对获取图像质量造成干扰,通过最近邻插值算法将无人机飞行高度为25 m处获取的两个多光谱和可见光图像数据集分别退化为十个不同地面分辨率的模糊图像数据集,以模拟无人机在不同飞行高度中获取的作物图像。然后获取50m高度处的无人机图像数据集通过皮尔逊相关性分析验证模拟数据集的有效性。最后采用随机森林模型估算不同数据集中的植被覆盖度,分类精度大于91%。结果发现,当植被覆盖度小于二分之一时,随着地面分辨率的降低该指标不断被低估,反之则被高估。飞行高度50 m的真实图像与模拟图像估算植被覆盖度结果的相关系数r为0.992 8,两者具有强相关性,模拟图像估算得到的植被覆盖度变化具备参考意义。植被指数估算结果中,首先对无人机图像数据集进行辐射校正、阈值分割等图像预处理,然后根据公式计算得到植被指数,最后通过假设性检验对十个图像数据集计算得出的植被指数进行分析。结果发现,可见光植被指数在飞行高度61 m时具备显著性差异,多光谱植被指数在十个高度下均没有显著性差异,因此为保证无人机获取数据的准确性与完整性,建议当无人机搭载本文的两种相机获取作物信息时建议飞行高度不高于61 m。本研究为研究者利用无人机搭载多传感设备获取作物信息设定合适的飞行高度、减小作业成本提供参考。  相似文献   

19.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号