首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 859 毫秒
1.
为了提高农机路径跟踪系统控制性能对作业速度变化的适应性,该研究提出一种基于预瞄运动学模型的快速预测控制方法。采用预瞄跟随理论建立预瞄航向误差模型,并将其作为输出方程与路径跟踪误差常规状态方程联立,构建预瞄运动学状态空间误差模型,进而运用模型预测控制算法与输入参数化衰减策略设计路径跟踪控制律。仿真试验结果表明,在不同作业速度下,预瞄模型预测控制器的直线路径跟踪横向误差均渐近趋于0,行驶曲线均无超调;当作业速度为1、3与5 m/s时,预瞄模型预测控制器的圆形路径跟踪横向最大绝对误差分别为8.52、10.42和10.82 cm,标准差分别为3.96、5.83和6.17 cm;当控制时域为10、30与60时,预瞄模型预测控制器的运算周期相对常规模型预测控制器分别减小7.5%、43.0%和48.5%;与常规模型预测控制相比,预瞄模型预测控制能够在确保路径跟踪系统控制精度的同时有效改善系统的动态性能和提高系统的实时性,使不同作业速度下的跟踪效果更加均衡。田间测试结果表明,在0.5~5 m/s作业速度范围内,预瞄模型预测控制器对作业速度变化具有较强的适应性,能够使农机快速平稳地跟踪参考路径并具有较高的控制精度,其直线路径跟踪的横向最大绝对误差均值小于5.5 cm、标准差均值小于2.5 cm,圆形路径跟踪的横向最大绝对误差均值小于15.5 cm、标准差均值小于8.5 cm,跟踪效果满足农机实际作业要求,适于复杂作业环境或高速作业场合。  相似文献   

2.
基于GNSS的农机自动导航路径搜索及转向控制   总被引:8,自引:8,他引:0  
为提高农机自动导航系统性能,提出了一种基于全球导航卫星系统(global navigation satellite system,GNSS)的农机自动导航路径搜索方法和基于预瞄点搜索的纯追踪模型。根据农机不同作业需求,导航系统可选择直线路径搜索或曲线路径搜索,实现农机直线和曲线自动导航作业;建立基于预瞄点搜索的纯追踪模型,并将其用于农机转向控制,该模型不涉及复杂的控制理论,适用性较强。为验证路径搜索方法和纯追踪模型性能,以John Deere拖拉机为试验平台,进行了农机直线跟踪和转向控制导航试验。结果表明:直线路径跟踪导航试验,车速为0.8、1.0和1.2 m/s时,导航均方根误差分别为3.79、4.28和5.39 cm;转向导航试验,车速为0.6 m/s时,在弓形转弯和梨形转弯导航方式下,导航均方根误差分别为25.23和14.42 cm;与模糊控制方法对比试验,直线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为4.30和5.95 cm,在曲线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为13.73和21.40 cm;基于GNSS的农机自动导航路径搜索方法和预瞄点搜索的纯追踪模型可以得到较好的定位控制精度,可满足田间实际作业的要求。  相似文献   

3.
拖拉机自动导航变曲度路径跟踪控制   总被引:2,自引:2,他引:0  
针对当前拖拉机自动导航曲线跟踪控制精度不能满足生产需要的问题,该研究提出一种基于前轮转角前馈补偿策略的变曲度路径跟踪控制方法。综合考虑农机作业速度和目标路径曲度对前视距离的影响,通过调整前视区域和计算预瞄点,动态调整前视距离和前轮转角前馈量,在追踪预瞄点的过程中,利用农机与目标路径偏差设计变曲度路径跟踪模糊控制器,通过实时调整拖拉机前轮转角补偿量减小稳态误差。以DF2204无级变速拖拉机为试验平台,设计并研发了自动导航系统,开展21组变曲度路径跟踪控制试验。试验结果表明,拖拉机以1、1.5、2和3 m/s速度行驶时的平均绝对误差的平均值分别为2.7、2.7、3.3和4.0 cm,均方根误差的平均值分别为3.4、3.7、4.6和5.0 cm,满足农业生产需求。所提方法可有效提高农机曲线路径跟踪精度,减少漏耕,提高农田利用率。  相似文献   

4.
东方红X-804拖拉机的DGPS自动导航控制系统   总被引:37,自引:29,他引:8  
该文在东方红X-804拖拉机上开发了基于RTK-DGPS的自动导航控制系统。系统主要包括RTK-DGPS接收机、导航控制器、转向操纵控制器、电控液压转向装置和转向轮偏角检测传感器。其中转向操纵控制器、转向轮偏角检测传感器和电控液压转向装置构成转向轮偏角的闭环控制回路,该回路可根据导航控制器提供的期望转向轮偏角实现偏转角的随动控制。将拖拉机运动学模型和转向操纵控制模型相结合,建立了拖拉机直线跟踪的导航控制传递函数模型,模型的输入是横向跟踪误差,输出是期望的转向轮偏角。设计了基于PID算法的导航控制器,仿真分析了系统稳定性和动态响应性能,确定了PID控制参数的较佳取值。针对东方红X-804拖拉机转弯半径大的特点,采用跨行地头转向控制方式,提出了具体的控制流程及算法。田间试验结果表明:采用所设计的DGPS自动导航控制系统,在拖拉机行进速度为0.8 m/s时,直线跟踪的最大误差小于0.15 m,平均跟踪误差小于0.03 m,所提出的跨行地头转向控制方法对试验拖拉机具有良好的适用性。  相似文献   

5.
基于GPS/INS和线控转向的农业机械自动驾驶系统   总被引:9,自引:9,他引:0  
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

6.
水稻田土壤松软,收割机作业后会出现残留秸秆凸起、地表坑洼等现象,导致秸秆旋埋还田作业易出现重耕、漏耕和自动驾驶路径跟踪精度差等问题。该研究基于滑移估计模型推导了拖拉机路径跟踪的前轮转角控制率,并设计了一种变增益单神经元PID导航控制器。在自主设计的电控比例液压转向系统基础上开发了秸秆旋埋还田导航系统,采用双天线RTK-GNSS获取拖拉机的实时位置和航向角信息,由变增益单神经元PID控制器根据理论转角和航向角偏差变化输出实际执行转角,实现旋埋作业自主路径跟踪。田间试验表明,作业速度为1.15m/s时,变增益单神经元PID控制器的自适应直线跟踪最大横向偏差不超过0.071 m,平均绝对偏差不超过0.031 m。与常规PID控制器相比,变增益单神经元PID控制器的最大横向偏差和平均绝对偏差控制精度分别提高了53.08%和51.72%;与单神经元PID控制器相比,最大横向偏差和平均绝对偏差控制精度分别提高了39.00%和28.21%。该研究设计的变增益单神经元PID控制器可以增强导航系统的适应性和鲁棒性,提高路径跟踪精度,适用于未来无人驾驶下的秸秆旋埋还田作业。  相似文献   

7.
拖拉机沿曲线路径的跟踪控制   总被引:8,自引:2,他引:6  
近年关于农业用车轮型移动机器人的研究很多,但主要集中在直线行走方面。该研究进行了沿给定的曲线路径跟踪控制的研究。首先由给定的曲线路径生成四元状态空间,其次在利用预见控制求得车辆的未来值和目标值的基础上,利用最优控制理论设计跟踪控制器。最后在牧草地上对正弦路径和圆形路径进行了跟踪实验。试验结果为:车辆以1.5 m/s的速度行驶时,在很小转弯半径时最大误差可控制在35 cm以内。  相似文献   

8.
基于速度自适应的拖拉机自动导航控制方法   总被引:3,自引:3,他引:0  
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

9.
基于Bezier曲线优化的农机自动驾驶避障控制方法   总被引:4,自引:3,他引:1  
动力换挡拖拉机的产生促进农机自动驾驶向着无人化方向发展,农机的自动避障成为需要解决的关键问题。该文针对最短切线路径曲线曲率不连续、跟踪控制精度差及农机运动模型精度低等缺点,采用三阶Bezier曲线优化法形成连续平滑农机避障路径,通过链式控制理论建立农机运动线性控制模型,利用PI控制器进行转角补偿,并进行了控制方法的仿真和犁耕作业试验。仿真结果表明:农机行驶的航向误差角在-0.06~0.06 rad,横向位置误差小于13 cm,前轮转向角变化平缓,没有显著突变,说明该方法控制精度较高,农机能够按预设轨迹行驶。犁耕作业试验结果表明:Bezier曲线部分的避障精度为5.21 cm,曲线路径的跟踪控制效果较好;避障后农机继续沿直线行驶的精度为1.98 cm,说明该方法可保证农机在避障后恢复直线自动驾驶。研究结果表明,该避障路径控制方法在不平整犁耕地中具有较好的鲁棒性和适应性,可满足拖拉机作业的避障要求。  相似文献   

10.
联合收获机单神经元PID导航控制器设计与试验   总被引:5,自引:4,他引:1  
针对联合收获机在田间直线跟踪作业中在维持高割幅率条件下易产生漏割的问题,设计了一种基于单神经元PID(Proportion Integration Differentiation)的联合收获机导航控制器。以轮式联合收获机为平台,通过对原有液压转向机构进行电控液压改装,搭载相关传感器构建了导航硬件系统。开展了常规PID控制和单神经元PID控制的仿真以及实地对比试验,仿真结果表明单神经元PID控制具有超调小和进入稳态快等特点;路面试验表明,当收获机速度为0.7 m/s时,单神经元PID控制最大跟踪偏差为6.10 cm,平均绝对偏差为1.21 cm;田间试验表明,收获机速度为0.7 m/s时,单神经元PID控制田间收获最大跟踪偏差为8.14 cm,平均绝对偏差为3.20 cm。试验表明所设计的联合收获机导航控制器能够满足自动导航收获作业要求,为收获作业自动导航提供了技术参考。  相似文献   

11.
雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计   总被引:16,自引:14,他引:2  
为减少农药喷雾作业对人体造成的化学损害,该研究以雷沃高地隙喷杆喷雾机为平台,基于GNSS开发了自动导航作业系统,实现喷雾机在极少人工干预情况下的自动导航作业。通过对平台的机-电-液改造,实现了喷雾机作业系统的电气化控制。基于简化的二自由度车辆转向模型设计了以位置偏差和航向偏差为状态变量的直线路径跟踪控制算法,基于纯追踪模型设计了曲线路径跟踪控制算法。根据喷雾机田间作业需要设计了喷雾机一体化自动导航作业控制方法,使系统能够自动控制喷雾机完成直线、地头转弯行驶和喷雾作业,油门调节以及车辆启停控制。在1.3 m/s左右的前进速度条件下,分别在水泥路面、旱田、水田环境中进行了试验,测试结果表明:水泥路面车身横滚在–1.6?~1.5?范围,直线路径跟踪误差最大值为3.9 cm,平均值为-0.15 cm,标准差为1.0 cm;旱田地块车身横滚在–1.4?~3.3?范围,跟踪误差最大值为9.8 cm,平均值为1.3 cm,标准差为3.3 cm;水田环境车身横滚在–2.4?~5.2?范围,跟踪误差最大值为17.5 cm,平均值为2.2 cm,标准差为4.4 cm。试验数据表明,所设计的自动导航作业系统初始上线快速、地头转弯对行平顺、各设计功能执行可靠;导航系统具有良好的稳定性和控制精度,能够满足水田、旱田环境下的喷雾作业要求。  相似文献   

12.
为提高无人驾驶履带式花生收获机沙地作业路径跟踪精度,以4HBL-2型自走式花生联合收获机为研究对象,开展了履带式收获机无人驾驶路径跟踪控制研究。建立了履带式收获机运动学模型与虚拟转向角函数关系;以航向偏差值作为观测量、阿克曼模型推算角速度作为测量值,设计卡尔曼融合算法,获得基于阿克曼模型的虚拟转向角度;根据虚拟转向角度对PID路径跟踪算法进行改进,提出了基于预瞄跟踪的双PID路径跟踪控制方法;通过脉冲宽度控制器实现了履带式花生收获机路径跟踪精准控制。仿真试验结果表明:基于预瞄跟踪双PID的路径跟踪控制方法能够进行路径跟踪控制,具有控制平滑和稳态误差小等特点。田间试验表明:花生收获机在沙地以0.6m/s的速度作业时,系统直线跟踪平均绝对误差为2.23 cm,最大偏差为4.14 cm,相对于PD路径跟踪控制器分别提高了56.12%和66.07%。上线试验中,初始偏差分别是0.5、1.0和1.5 m时,上线时间分别为11.00、12.92和13.78 s,上线距离为6.60、7.75和8.26 m;最大超调量分别为5.68%、5.84%和8.06%,相较于轮式收获机,上线距离分别减小了1.9...  相似文献   

13.
基于超宽带无线定位的农业设施内移动平台路径跟踪研究   总被引:5,自引:4,他引:1  
为实现农业设施内车辆自动导航,提出了一种基于超宽带(ultrawideband,UWB)无线定位的路径跟踪方法。运用4个基站组建UWB无线定位系统,采用加权最小二乘法(weighted least squares, WLS)法解超静定方程组,提高了移动标签的定位精度。重新定义前视距离,根据车体航向与前视直线的夹角界定车体偏差程度,并提出基于动态前视距离的改进型纯追踪模型。在MATLAB 2016a软件环境下的仿真说明该文算法优于采用固定视距的传统纯追踪算法,并进行实车试验。结果显示,在UWB定位系统的引导下,车体在不同初始状态下均能很好地收敛到期望直线,当速度为0.5 m/s时,在4种初始状态下进行直线跟踪,稳态偏差为5.4~8.4 cm,稳态偏差均值为6.3 cm。在矩形路径跟踪时,当横向偏差和航向偏差均为0的初始状态下,全程平均偏差为20.6 cm,跟踪偏差主要出现在90°转向处,最大偏差为85.5 cm,说明改进后的纯追踪算法的路径追踪质量均优于采用固定视距的传统纯追踪模型,能满足农业设施内移动平台自动导航的需求。该方法可为农业设施内车辆导航提供新思路。  相似文献   

14.
基于预瞄追踪模型的农机导航路径跟踪控制方法   总被引:17,自引:12,他引:5  
农机导航系统的上线性能和复杂路面抗干扰能力影响着农田作业的质量和效率,为提高农机导航系统的上线速度、上线稳定性和对复杂路面的适应性,提出了一种预瞄追踪模型的农机导航路径跟踪控制方法。该方法实质是对农机运动学模型方法的改进,针对农机运动学模型小角度线性化算法中近似条件的缺点,采用预瞄追踪辅助直线引导农机快速稳定跟踪规划路径。该文参考农机运动学模型极点最优配置算法证明过程,分3步证明了该控制方法的可行性,并通过仿真和试验验证了该方法的有效性。仿真结果显示在不同的初始位置偏差和航向偏差条件下该方法都可以迅速消除偏差以稳定跟踪规划路径,位置偏差校正曲线平滑且超调量微小,说明预瞄追踪模型方法对提高农机导航系统的上线性能和抗干扰能力是有效的。田间试验结果:在初始航向偏差为0,初始位置偏差分别为0.5、1、1.5 m条件下,上线时间分别为6.8、8.2、9.4 s,上线距离分别为6.73、8.11、9.33 m,超调量分别为5.2、7.0、8.5 cm;颠簸不平旱地路面直线路径跟踪的最大误差不超过4.23 cm,误差绝对值的平均值为1 cm,标准差为1.25 cm。数据表明采用该文提出的控制方法具有良好的上线和直线路径跟踪效果,满足农业机械的导航作业要求。  相似文献   

15.
赵翾  杨珏  张文明  曾珺 《农业工程学报》2015,31(10):198-203
针对农用轮式铰接车辆驾驶员工作条件恶劣的问题,该文提出了一种应用于无人驾驶系统的滑模变结构控制铰接车精确轨迹跟踪的方法。首先推导出了铰接车的运动学模型,根据该模型建立实际行驶轨迹与参考轨迹偏差的模型,之后针对偏差模型设计滑模变结构路径跟踪控制器,该控制器使用Ackermann公式设计,控制律采用指数趋近律使系统有较快的响应和较小的抖振,同时,为了进一步抑制滑模控制器固有的抖振问题,将趋近律中的符号函数替换为连续函数,以避免趋近律数值产生阶跃变化,并用Lyapunov函数证明了其稳定性,最后在硬件在环仿真中验证了控制器的实时性和路径跟踪质量。结果表明,该控制器在硬件在环仿真环境下可将横向位置偏差、航向角偏差、曲率偏差分别控制在0.21 rad(12°)、100 mm、0.17rad(1°)、0.005 m-1附近,各向偏差均在10 s内达到平衡,且误差控制在5%以内,铰接车能有效跟踪参考路径。该研究为农用轮式铰接车辆实现无人驾驶提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号