首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greater number of, and more varied, modes of resistance have evolved in weeds than in other pests because the usage of herbicides is far more extensive than the usage of other pesticides, and because weed seed output is so great. The discovery and development of selective herbicides are more problematic than those of insecticides and fungicides, as these must only differentiate between plant and insect or pathogen. Herbicides are typically selective between plants, meaning that before deployment there are already some crops possessing natural herbicide resistance that weeds could evolve. The concepts of the evolution of resistance and the mechanisms of delaying resistance have evolved as nature has continually evolved new types of resistance. Major gene target‐site mutations were the first types to evolve, with initial consideration devoted mainly to them, but slowly ‘creeping’ resistance, gradually accruing increasing levels of resistance, has become a major force owing to an incremental accumulation of genetic changes in weed populations. Weeds have evolved mechanisms unknown even in antibiotic as well as other drug and pesticide resistances. It is even possible that cases of epigenetic ‘remembered’ resistances may have appeared. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
3.
Natural products as sources of herbicides: current status and future trends   总被引:31,自引:0,他引:31  
Duke  Dayan  Romagni  & Rimando 《Weed Research》2000,40(1):99-111
Although natural product-based discovery strategies have not been as successful for herbicides as for other pesticides or pharmaceuticals, there have been some notable successes. Phosphinothricin, the biosynthetic version of glufosinate, and bialaphos are phytotoxic microbial products that have yielded commercial herbicides. Cinmethylin, a herbicidal analogue of cineole, has been sold in Europe and Asia. The triketone herbicides are derivatives of the plant-produced phytotoxin leptospermone. These products represent only a small fraction of commercialized herbicides, but they have each introduced a novel molecular target site for herbicides. Analysis of the literature reveals that phytotoxic natural products act on a large number of unexploited herbicide target sites. The pesticide industry's natural product discovery efforts have so far concentrated on microbially derived phytotoxins, primarily from non-pathogenic soil microbes, involving the screening of large numbers of exotic isolates. Plant pathogens usually produce potent phytotoxins, yet they have received relatively little attention. Even less effort has been made to discover plant-derived phytotoxins. Bioassay-directed isolation has been the preferred method of discovery after a producing organism is selected. This laborious approach often leads to rediscovery of known compounds. Modern tandem separation/chemical characterization instrumentation can eliminate much of this problem by identification of compounds before they are bioassayed.  相似文献   

4.
Natural products (NPs) have long been used as pesticides and have broadly served as a source of inspiration for a great many commercial synthetic organic fungicides, herbicides and insecticides that are in the market today. In light of the continuing need for new tools to address an ever‐changing array of fungal, weed and insect pests, NPs continue to be a source of models and templates for the development of new pest control agents. Interestingly, an examination of the literature suggests that NP models exist for many of the pest control agents that were discovered by other means, suggesting that, had circumstances been different, these NPs could have served as inspiration for the discovery of a great many more of today's pest control agents. Here, an attempt is made to answer questions regarding the existence of an NP model for existing classes of pesticides and what is needed for the discovery of new NPs and NP models for pest control agents. © 2014 Society of Chemical Industry  相似文献   

5.
There is a long history of using natural products as the basis for creating new pesticides but there is still a relatively low percentage of naturally derived pesticides relative to the number of pharmaceuticals derived from natural sources. Biopesticides as defined and regulated by the US Environmental Protection Agency (EPA) have been around for 70 years, starting with Bacillus thuringiensis, but they are experiencing rapid growth as the products have got better and more science‐based, and there are more restrictions on synthetic chemical pesticides. As such, biopesticides are still a small percentage (approximately US$3–4 billion) of the US$61.3 billion pesticide market. The growth of biopesticides is projected to outpace that of chemical pesticides, with compounded annual growth rates of between 10% and 20%. When integrated into crop production and pest management programs, biopesticides offer the potential for higher crop yields and quality than chemical‐only programs. Added benefits include reduction or elimination of chemical residues, therefore easing export, enabling delay in the development of resistance by pests and pathogens to chemicals and shorter field re‐entry, biodegradability and production using agricultural raw materials versus fossil fuels, and low risk to non‐target organisms, including pollinators. Challenges to the adoption of biopesticides include lack of awareness and education in how to deploy their unique modes of action in integrated programs, testing products alone versus in integrated programs, and lingering perceptions of cost and efficacy. © 2019 Society of Chemical Industry  相似文献   

6.
光活化农药的研究与应用   总被引:12,自引:6,他引:12  
结合作者近期的研究工作,对光活化农药的研究现状、作用机理、应用前景及其与新农药创 制的关系进行了综述。  相似文献   

7.
Agricultural industrialization and the subsequent reliance on pesticides has resulted in numerous unintended consequences, such as impacts upon the environment and by extension human health. Eco‐efficiency is a strategy for sustainably increasing production, while simultaneously decreasing these externalities on ecological systems. Eco‐efficiency is defined as the ratio of production to environmental impacts. It has been widely adopted to improve chemical production, but we investigate the challenges of applying eco‐efficiency to pesticide use. Eco‐efficiency strategies include technological innovation, investment in research and development, improvement of business processes, and accounting for market forces. These components are often part of integrated pest management (IPM) systems that include alternatives to pesticides, but its implementation is often thwarted by commercial realities and technical challenges. We propose the creation and adoption of an eco‐efficiency index for pesticide use so that the broad benefits of eco‐efficient strategies such as IPM can be more readily quantified. We propose an index based upon the ratio of crop yield to a risk quotient (RQ) calculated from pesticide toxicity. Eco‐efficiency is an operational basis for optimizing pest management for sustainability. It naturally favors adoption of IPM and should be considered by regulators, researchers, and practitioners involved in pest management. © 2019 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Environmental pesticides, including insecticides and herbicides, are frequently encountered as mixtures and threaten non‐target organisms in water. Evaluation of the combined toxicity of diverse pesticides with various concentration combinations is important, especially using limited experimental effort. Uniform design (UD) is one optimal experimental technique that can rationally arrange the concentrations of mixture components so that, with a minimum number of experimental runs, the combined toxicity of multiple pesticide mixtures can be evaluated. RESULTS: The concentration compositions of 18 pesticide mixture points designed by UD covered almost all possible concentration ranges of the mixture components on account of the two merits of ‘space filling’ and ‘multiple levels’. The combined toxicities of 18 mixture rays extended by using the fixed‐ratio ray design (FRRD) from 18 UD mixture points were evaluated by concentration addition (CA) and independent action (IA) models. It was found that the concentration–response curves (CRCs) predicted by CA were, on the whole, located between the 95% confidence intervals of the experimental CRCs, which implied that the combined toxicity of the pesticide mixture rays could be evaluated by CA. The CRCs predicted by IA were very similar to those from CA. CONCLUSION: The model developed from the UD mixture rays can effectively simulate mixtures with arbitrary concentration compositions of 15 pesticides. The CA model can accurately evaluate and predict the combined toxicity of the pesticides, which provides a useful tool for risk assessment of a mixture of multiple pesticides in the aquatic environment. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Recent research has suggested that a high proportion of farms can dramatically reduce pesticide applications without reducing crop yields or farm profits. Yet this research has made estimation choices that may systematically bias downwards estimates of the productivity and profitability of pesticides. Fifty years of agricultural economics research provides lessons about how to avoid pitfalls in estimating pesticide productivity. Carefully executed econometric studies have found evidence of overuse, underuse, and near‐optimal use of pesticides in different cropping systems. There are now standard methods to test and correct for sources of biases (either upward or downward) in estimates of pesticide productivity. Ignoring these lessons and methods can seriously bias estimates of the potential for reducing pesticide use at little or no economic cost. © 2018 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Target‐site resistance is the major cause of herbicide resistance to acetolactate synthase (ALS)‐ and acetyl‐CoA carboxylase (ACCase)‐inhibiting herbicides in arable weeds, whereas non‐target‐site resistance is rarely reported. In the Echinochloa phyllopogon biotypes resistant to these herbicides, target‐site resistance has not been reported, and non‐target‐site resistance is assumed to be the basis for resistance. To explore why target‐site resistance had not occurred, the target‐site genes for these herbicides were isolated from E. phyllopogon, and their expression levels in a resistant biotype were determined. RESULTS: Two complete ALS genes and the carboxyltransferase domain of four ACCase genes were isolated. The expression levels of ALS and ACCase genes were higher in organs containing metabolically active meristems, except for ACC4, which was not expressed in any organ. The differential expression among examined organs was more prominent for ALS2 and ACC2 and less evident for ALS1, ACC1 and ACC3. CONCLUSION: E. phyllopogon has multiple copies of the ALS and ACCase genes, and different expression patterns were observed among the copies. The existence of three active ACCase genes and the difference in their relative expression levels could influence the occurrence of target‐site resistance to ACCase inhibitors in E. phyllopogon. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
12.
Evolution of resistance to herbicides in weeds is becoming an increasing problem worldwide. To develop effective strategies for weed control, a thorough knowledge of the basis of resistance is required. Although non‐target‐site‐based resistance is widespread, target site resistance, often caused by a single nucleotide change in the gene encoding the target enzyme, is also a common factor affecting the efficacies of key herbicides. Therefore, fast and relatively simple high‐throughput screening methods to detect target site resistance mutations will represent important tools for monitoring the distribution and evolution of resistant alleles within weed populations. Here, we present a simple and quick method that can be used to simultaneously screen for up to 10 mutations from several target site resistance‐associated codons in a single reaction. As a proof of concept, this SNaPshot multiplex method was successfully applied to the genotyping of nine variable nucleotide positions in the CT domain of the chloroplastic ACCase gene from Lolium multiflorum plants from 54 populations. A total of 10 nucleotide substitutions at seven of these nine positions (namely codons 1781, 1999, 2027, 2041 2078, 2088 and 2096) are known to confer resistance to ACCase‐inhibiting herbicides. This assay has several advantages when compared with other methods currently in use in weed science. It can discriminate between different nucleotide changes at a single locus, as well as screening for SNPs from different target sites by pooling multiple PCR products within a single reaction. The method is scalable, allowing reactions to be carried out in either 96‐ or 384‐well plate formats, thus reducing work time and cost.  相似文献   

13.
Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino acid substitutions is to cite the wild‐type amino acid, the codon number and the new amino acid, using the one‐letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers. These differences in numbering arise from the different lengths of the proteins in each species. The purpose of the present paper is to propose a system for unifying the labelling of amino acids in fungicide target proteins. To do this we have produced alignments between fungicide target proteins of relevant species fitted to a well‐studied ‘archetype’ species. Orthologous amino acids in all species are then assigned numerical ‘labels’ based on the position of the amino acid in the archetype protein. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plant species and can provide multiple benefits to the host plant. In agro‐ecosystems, the abundance and community structure of AMF are affected by agricultural management practices. This review describes and discusses current knowledge on the effects of inorganic and organic chemical pesticides on AMF in the conflicting area between agricultural use and environmental concerns. Variable effects have been reported following chemical pesticide use, ranging from neutral to positive and negative. Moreover, a species‐specific reaction has been documented. The reported effects of pesticides on arbuscular mycorrhizal symbiosis are very diverse, and even when the same substance is investigated, the results are often contradictory. These effects depend on many parameters, such as the active substance, the mode of action, the mode of application and the dosage. In the field, determinants such as the physico‐chemical behavior of the active substances, the soil type and other soil microorganisms contribute to the fate of pesticides and thus the amount of active substances to which AMF are exposed. This review highlights that the fate of AMF following pesticide use needs to be addressed in a broader agro‐ecosystem context. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
BACKGROUND: Integrated pest management (IPM) technology has been disseminated since 1989 in Indonesia to cut down pesticide use, but the adoption and diffusion of the technology are still debated. This study aims to estimate the models of demand for pesticides and to analyse the impact of IPM technology on pesticide use. Aggregate cross-section time series data from 1990-1998 are used.RESULTS: The results show that IPM technology reduces the use of pesticides by improving the process of rice production, such that pesticides are more efficiently used. In this case, the IPM technology is not a pest control technique.CONCLUSION There is an indication that IPM technology has been adopted by farmers. This is evidence that the IPM programme in Indonesia was successful in this area. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

16.
BACKGROUND: Physically based tier‐II models may serve as possible alternatives to expensive field and laboratory leaching experiments required for pesticide approval and registration. The objective of this study was to predict pesticide fate and transport at five different sites in Hawaii using data from an earlier field leaching experiment and a one‐dimensional tier‐II model. As the predicted concentration profiles of pesticides did not provide close agreement with data, inverse modeling was used to obtain adequate reactive transport parameters. The estimated transport parameters of pesticides were also utilized in a tier‐I model, which is currently used by the state authorities to evaluate the relative leaching potential. RESULTS: Water flow in soil profiles was simulated by the tier‐II model with acceptable accuracy at all experimental sites. The observed concentration profiles and center of mass depths predicted by the tier‐II simulations based on optimized transport parameters provided better agreements than did the non‐optimized parameters. With optimized parameters, the tier‐I model also delivered results consistent with observed pesticide center of mass depths. CONCLUSION: Tier‐II numerical modeling helped to identify relevant transport processes in field leaching of pesticides. The process‐based modeling of water flow and pesticide transport, coupled with the inverse procedure, can contribute significantly to the evaluation of chemical leaching in Hawaii soils. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Succinate dehydrogenase inhibitors (SDHIs) have played a crucial role in disease control to protect cereals as well as fruit and vegetables for more than a decade. Isoflucypram, the first representative of a newly installed subclass of SDHIs inside the Fungicide Resistance Action Committee (FRAC) family of complex II inhibitors, offers unparalleled long‐lasting efficacy against major foliar diseases in cereals. Herein we report the chemical optimization from early discovery towards isoflucypram and the first hypothesis of its altered binding mode in the ubiquinone binding site of succinate dehydrogenase. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

18.

BACKGROUND

Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK‐2A. Its mode of action and target site interactions have been investigated.

RESULTS

UK‐2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK‐2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK‐2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK‐2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross‐resistance to strobilurin, azole or benzimidazole fungicides.

CONCLUSION

Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK‐2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

19.
In the present review we seek to provide an up‐to‐date view on the molecular nature of the active site of the plant alternative oxidase which has been postulated to comprise of a binuclear iron centre. A three‐dimensional model of the catalytic centre of the oxidase is presented which is based on the active site structure of the free radical component of ribonucleotide reductase and methane monooxygenase. The model indicates that a highly conserved carboxylate (Glu‐270) occupies a central position within the proposed di‐iron centre as it co‐ordinates both iron atoms. The expression of an alternative oxidase protein in Schizosaccharomyces pombe in which Glu‐270 was mutated to asparagine yields an inactive protein. The implications of this in relation to the structural model of the active site of the oxidase suggests that Glu‐270 is essential for catalytic alternative oxidase activity. A kinetic mechanism is suggested which accounts for the full reduction of dioxygen to water catalysed by a single di‐iron centre. © 2000 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The neonicotinoid class of insecticides is a key component of pest management strategies used by stone fruit producers in Europe. Neonicotinoids are currently one of the most important tools for control of the peach‐potato aphid (Myzus persicae). Overreliance on neonicotinoids has led to the development of resistance through a combination of metabolic and target‐site resistance mechanisms in individual aphids. A resistance monitoring project was conducted by Syngenta in 2010 to determine the resistance status of M. persicae populations collected from France and Spain, and to determine the frequency of the target‐site mutation in those populations. RESULTS: Resistance monitoring suggests that resistance to neonicotinoids is relatively widespread in populations of M. persicae collected from peach orchards in the Languedoc‐Roussillon, Provence‐Alpes‐Cote d'Azur and Rhone‐Alpes regions of France, and resistance can be associated with the frequency of the target‐site mutation (R81T). The R81T mutation in its heterozygous form is also present in Spanish populations and is associated with neonicotinoid resistance. CONCLUSION: The widespread nature of neonicotinoid resistance in southern France and the potential for resistance development in northern Spain highlight the need for a coordinated management strategy employing insecticides with different modes of action to reduce the selection pressure with neonicotinoids. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号