首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
分别利用三种紫外灯(UVA、UVB、UVC)辐照黑腹果蝇蛹,研究辐照对黑腹果蝇的羽化率、性比、飞出率、死蛹率、成虫干重、蛹重以及F1羽化率、F1性比、F1死蛹率、F1成虫干重的影响.结果 表明:辐照后黑腹果蝇羽化率均显著降低,其中UVB辐照6h后的黑腹果蝇蛹羽化率最低,为10.00%;经过UVA辐照9h组的性比平均值为...  相似文献   

3.
4.
7种植物精油对黑腹果蝇驱避/引诱活性及其化学成分分析   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster Meigen为害多种水果, 化学农药对其防控效果较差, 从具有特殊气味的植物中寻找可有效驱避或引诱黑腹果蝇的化合物是防控黑腹果蝇的有效方法之一。本试验采用水蒸气蒸馏法提取了青蒿Artemisia caruifolia、花椒Zanthoxylum bungeanum、番茄Lycopersicon esculentum、蒲公英Taraxacum mongolicum、艾蒿Artemisia argyi、蕺菜Houttuynia cordata、万寿菊Tagetes erecta 等7种植物的精油, 并测定了这些精油对黑腹果蝇的驱避及引诱活性。结果表明:青蒿精油的驱避活性最好, 浓度为500 mg/L时驱避率为88.58%; 其次为花椒和艾蒿精油, 浓度为500 mg/L时驱避率分别为73.33%和68.58%。高浓度(500 mg/L)的番茄精油表现为驱避作用, 随着浓度降低(20~100 mg/L)则表现出一定的引诱作用。气相色谱-质谱联用(GC-MS)对各精油的化学成分分析结果表明:青蒿精油和艾蒿精油中以烷烃类化合物和醇类化合物为主要组分, 石竹烯氧化物和萘嵌戊烷分别是两种精油中含量最高的化合物; 花椒精油和万寿菊精油中主要组分为萜类化合物, 芳樟醇-L和胡椒酮分别是两种精油中含量最高的化合物; 番茄精油中主要化合物种类是萜类和醇类化合物, 薄荷脑是其中含量最高的化合物; 蒲公英精油中以酚类化合物为主, 其中丁子香酚含量最高; 蕺菜精油中以萜类和烷酮类化合物为主, 其中2-十一烷酮是含量最高的化合物。对其中含量较多的化合物进行活性测定, 发现苯乙醇对黑腹果蝇的驱避活性最好, 浓度为1 000 mg/L时, 驱避率为89.87%; 丁子香酚、α-萜品醇、萘嵌戊烷在低浓度时表现为引诱活性, 浓度为62.5 mg/L时, 驱避率分别为-71.11%、-46.30%、-27.30%。  相似文献   

5.
6.
为了筛选出对蓝莓上黑腹果蝇雌蝇具有驱避效果的植物精油单组分化合物,本文采用Y形嗅觉仪,评价10种植物精油单组分化合物对该种雌果蝇的驱避效果,筛选出驱避效果最优的植物精油单组分化合物后进行不同体积的混配,测定其对黑腹果蝇雌蝇的驱避活性.结果表明:D-柠檬烯、香茅醛2种植物精油单组分化合物对黑腹果蝇雌蝇的驱避效果最佳,且在...  相似文献   

7.
王照国  杨雪  余帅  黄裕兵  金军  李? 《植物保护》2021,47(5):204-209
黑腹果蝇Drosophila melanogaster 是多种水果生产中为害最为严重的害虫。植物精油可影响多种昆虫的行为。本试验提取了辣椒Capsicum annuum、小香葱Allium cepiforme、韭菜A.tuberosum 、洋葱A.cepa 、薄荷Mentha canadensis及大黄Rheum officinale 的精油,测试了各精油对黑腹果蝇行为的影响并分析了主要化学成分,在此基础上,测试了5种精油中主要化合物对黑腹果蝇行为的影响。结果表明:6种植物精油均对黑腹果蝇表现出一定的驱避活性,活性次序为:薄荷>洋葱>韭菜>大黄>小香葱>辣椒。各精油中所含的主要化合物为长叶薄荷酮、草蒿脑、茴香脑、大黄酸、3-甲氧基苯酚。长叶薄荷酮、草蒿脑及茴香脑对黑腹果蝇表现出显著的驱避活性,当浓度为62.5 mg/L时,它们对黑腹果蝇的驱避率均高于90%,15.62 mg/L的大黄酸和3-甲氧基苯酚表现出显著的引诱活性,驱避率分别为-87.50%和-117.76%。长叶薄荷酮、草蒿脑、3-甲氧基苯酚具有开发为昆虫驱避剂和引诱剂的潜力。  相似文献   

8.
9.
The cover image is based on the Research Article The novel pyridazine pyrazolecarboxamide insecticide dimpropyridaz inhibits chordotonal organ function upstream of TRPV channels by Christian Spalthoff et al., https://doi.org/10.1002/ps.7352

  相似文献   


10.
11.
BACKGROUND: With the worldwide use of insecticides, an increasing number of pest insect species have evolved target-site or metabolism-based resistance towards some of these compounds. The resulting decreased efficacy of pesticides threatens human welfare by its impact on crop safety and further disease transmission. Environmental concentrations of some insecticides are so high that even natural populations of non-target, non-pest organisms such as the fruit fly Drosophila melanogaster Meig. have been selected for resistance. Cyp6g1-overexpressing strains of D. melanogaster are resistant to a wide range of chemically diverse insecticides, including DDT and imidacloprid. However, up to now there has been no evidence that the CYP6G1 enzyme metabolises any of these compounds. RESULTS: Here it is shown, by heterologous expression in cell suspension cultures of Nicotiana tabacum L. (tobacco), that CYP6G1 is capable of converting DDT (20 microg per cell culture assay) by dechlorination to DDD (18% of applied amount in 48 h), and imidacloprid (400 microg) mainly by hydroxylation to 4-hydroxyimidacloprid and 5-hydroxyimidacloprid (58 and 19% respectively in 48 h). CONCLUSION: Thus, the gap between the supposed resistance gene Cyp6g1 and the observed resistance phenomenon was closed by the evidence that CYP6G1 is capable of metabolising at least two insecticides.  相似文献   

12.
黑腹果蝇Drosophila melanogaster Meigen是浆果类水果的果实害虫之一,对葡萄果实为害严重。毛锤角细蜂Trichopria drosophilae是黑腹果蝇的蛹寄生蜂之一。本文在温度26℃、相对湿度50%、光周期14L:10D的室内条件下,研究了毛锤角细蜂对不同日龄黑腹果蝇蛹的选择性。结果表明:毛锤角细蜂可寄生黑腹果蝇各日龄的蛹,但偏爱寄生预蛹。在寄主预蛹时,毛锤角细蜂的出蜂量、寄生率和选择系数分别为14.00头、35%和0.13,均显著高于1~3日龄蛹;不同日龄的黑腹果蝇蛹对毛锤角细蜂后代发育历期和雌蜂比没有显著影响。综上所述,黑腹果蝇的预蛹是毛锤角细蜂寄生的最佳时期。以黑腹果蝇为寄主时,研究毛锤角细蜂的寄生规律对于黑腹果蝇及其他果蝇的生物防治具有重要的指导意义。  相似文献   

13.
在实验室条件下,选取6种常用杀虫剂,采用胃毒触杀联合毒力测定方法测定了室内成虫种群对这几种药剂的敏感性。毒力测定结果表明:藜芦碱、高效氯氟氰菊酯、氯氰菊酯的毒力相对较高,而阿维菌素、氟虫腈、异丙威的毒力较低。藜芦碱、高效氯氟氰菊酯、氯氰菊酯可作为防治斑翅果蝇的候选药剂。  相似文献   

14.
Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
为进一步研究悬铃木方翅网蝽Corythucha ciliate嗅觉通讯分子机制和寻求新的悬铃木方翅网蝽防治技术,本研究克隆了悬铃木方翅网蝽的非典型气味受体基因CcilOrco,并对其序列进行生物信息学分析。根据GenBank中已发表的半翅目昆虫非典型气味受体家族基因的氨基酸保守序列设计简并引物,采用RT-PCR方法扩增目的基因,将其克隆至pEASY-Blunt载体并测序。将克隆获得悬铃木方翅网蝽非典型气味受体Orco的cDNA序列命名为CcilOrco(GenBank登录号:MF564288),序列分析结果显示,CcilOrco开放阅读框长1 419bp,编码472个氨基酸。预测其分子量为53.25kD,等电点为6.22,序列中有7个跨膜区,N-端在细胞膜内,C-端在细胞膜外。通过在GenBank中进行序列的同源性比较,该基因与已公布的半翅目昆虫的非典型气味受体基因序列有较高的同源性。克隆所获得的基因属于非典型气味受体家族基因。qPCR结果显示CcilOrco主要在雌雄成虫触角中高表达。  相似文献   

16.
17.
斑翅果蝇是一种主要为害软皮水果的害虫, 诱捕剂诱捕是防治该害虫的重要手段。为明确斑翅果蝇对寄主果实及其挥发性物质的趋性, 进而研发植物源引诱剂, 本研究利用四臂嗅觉仪测定了斑翅果蝇成虫对不同种类(葡萄、树莓、杨梅、蓝莓、樱桃和草莓)和不同成熟程度鲜果的趋性, 并分析了寄主果实挥发物成分。结果表明:1)斑翅果蝇成虫对过熟鲜果的趋性最强, 其次为成熟鲜果和未熟的鲜果; 2)成虫对葡萄的趋性最强, 其次分别为树莓、杨梅、蓝莓、樱桃和草莓; 3)葡萄挥发物中含量最高的成分为反式-2-己烯醛, 樱桃和树莓中为苯甲醇, 蓝莓中为乙醇。研究结果为进一步开发高效的斑翅果蝇植物源引诱剂奠定了基础。  相似文献   

18.
甲醛已被广泛用于人们的日常生活中,成为室内环境的主要污染源。为探讨甲醛对动物不同发育阶段的毒性,本文以模式生物果蝇Drosophila melanogaster为对象,研究了饲料中添加不同浓度甲醛对果蝇生长发育的影响。结果显示,当对照组发育至3龄幼虫(孵化后3d)时,与未添加甲醛的对照组相比,饲料中添加0.25%或0.50%的甲醛极显著降低了幼虫的体重(P<0.01),添加了0.50%甲醛的饲料组中发育出来的雌、雄成蝇体重也显著低于对照组,其中雌虫体重的差异达到极显著水平。此外,饲料中添加甲醛,还显著延长了幼虫发育的时间,即从胚胎到化蛹的发育时间、胚胎到羽化的发育时间都极显著长于对照组(P<0.01),而其蛹期变态发育时间在对照组和各实验组之间没有显著差异。饲料中添加甲醛,还极显著降低了果蝇的产卵量(P<0.01)。综上结果表明,饲料中含有甲醛可显著降低果蝇的发育速度,影响果蝇的生长和繁殖力,但对果蝇蛹期变态发育过程没有显著影响。  相似文献   

19.
20.
BACKGROUND: Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450–substrate interactions. RESULTS: Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X‐ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also ‘V’‐shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT–CYP6G1 complex and a non‐resistant CYP6A2 homology model implies that tight‐fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. CONCLUSION: The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号