首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirty-two crossbred lambs (BW = 31.2 ± 4.7 kg; 16 females, 16 males) housed in individual pens were used to investigate the relationship between nutrient supply and taste preferences in ruminants. Experiment 1 determined whether an imbalanced CP supply would alter preferences for feeds containing flavors designed to elicit either umami (U) or a mixture (1/3:1/3:1/3) of umami, sweet, and bitter (M) tastes. Lambs were randomly allocated to either a low (LP; 10.9% CP) or a high (HP; 20.4% CP) CP diet for 21 d. Afterward, lambs were presented during 21 d with a choice of the same LP or HP diet unflavored (LPC or HPC, respectively) or flavored (0.1% as fed) with U (LPU or HPU, respectively) or M (LPM or HPM). Experiment 2 determined the influence of CP status on preference for dietary CP, bitter taste, and sweet taste elicited by sucrose or a noncaloric sweetener. In test 1, sixteen lambs previously fed LP or HP for 42 d in Exp. 1 could choose between the HP and LP diets. In test 2, the remaining 16 lambs from Exp. 1 were offered a choice between unflavored LP or HP diets or the same diets flavored (0.066% as fed) with a bitter flavor. In test 3, the 16 lambs from test 1 were offered a choice between an unflavored diet (LP or HP) and the same diet flavored with sucrose (0.2%) or a noncaloric sweetener (0.066%). In Exp. 1, when offered a choice, all lambs showed a preference (P < 0.05) for the unflavored diet except for LP lambs, who clearly preferred (P < 0.05) LPU (72% of total DMI) over LPC. However, preference for LPU progressively decreased (P < 0.05) as time of exposure to the choice increased. In Exp. 2 (test 1), lambs previously fed LP progressively increased (P < 0.05) total DMI when presented with LP and HP, whereas consumption was constant for lambs previously fed HP and offered a choice of LP and HP diets. At the onset of test 2, lambs fed LP progressively reduced (P < 0.05) preference for the bitter flavor from 53 to 34%. In test 3, lambs previously fed LP diets consumed less (P < 0.05) sweetener- than sucrose-supplemented diet, whereas lambs previously offered HP diets consumed more sweetener- than sucrose-supplemented diet. In summary, protein-restricted lambs were able to differentiate and increase consumption of U-flavored feeds. However, this increase disappeared over time. These results indicate that lambs are able to sense dietary CP content and modulate short-term consumption of flavored feeds based on their nutrient requirements.  相似文献   

2.
Source and level of supplemental protein for growing lambs   总被引:3,自引:0,他引:3  
Two 3 x 2 factorial growth trials and a companion metabolism trial with 13, 15, or 17% dietary CP (DM basis), with or without 3% of the DM replaced with slowly degraded menhaden fish meal, were conducted to determine if level of dietary protein influences whether slowly degraded protein improves lamb growth and protein use. The growth trials included 32 and 34 pens of two weanling lambs initially weighing 23 to 26 kg and fed for 42 d. The metabolism trial included 12 additional lambs fed in metabolism cages with a 2-wk adjustment period, a 1-wk preliminary period, and a 7-d collection period. Plasma urea N (PUN) was measured in all lambs at the conclusion of the second growth trial and at the end of the metabolism trial. There was a protein level x protein source interaction (P = 0.05) for PUN of the 12 lambs in the metabolism trial but not for the 68 lambs in the second growth trial. Replacement of part of the soybean meal protein with protein from fish meal did not affect ADG or G:F at any protein level, but it lowered (P = 0.08) PUN in the second growth trial. Plasma urea N values were higher (P = 0.002) in lambs fed diets with 15 or 17% CP; however, ADG (P = 0.037 in Exp. 1 and P = 0.055 in Exp. 2), and G:F (P = 0.094 in Exp. 1 and P = 0.003 in Exp. 2) were lower for lambs fed the diets with 13% CP. There was little difference in ADG or G:F between lambs fed the diets with 15 or 17% CP, suggesting that a CP level of 15% with supplemental protein from soybean meal would be optimal for 25- to 40-kg growing Finnsheep x Dorset lambs.  相似文献   

3.
Two experiments were conducted to determine the influence of supplemental nonprotein N (NPN) provided daily (D) or every other day (2D) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and a urea (28.7% CP) or biuret (28.6% CP) supplement provided D or 2D at 0700. In Exp. 1, five wethers (39 +/- 1 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental NPN source and supplementation frequency (SF) on the efficiency of N use in lambs consuming low-quality grass straw (4% CP). The amount of CP supplied by each supplement was approximately 0.10% of BW/d (averaged over a 2-d period). In Exp. 2, 80 Angus x Hereford cows (540 +/- 8 kg BW) in the last third of gestation were used to determine the effect of NPN source and SF on cow performance. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. The supplemented treatments received the same amount of supplemental N over a 2-d period; therefore, the 2D treatments received double the quantity of supplemental N on their respective supplementation day than the D treatments. In Exp. 1, total DM, OM, and N intake; DM, OM, and N digestibility; N balance; and digested N retained were greater (P < 0.03) for supplemented than for CON wethers, with no difference (P > 0.05) between NPN sources or SF. Plasma urea-N (PUN) was increased with N supplementation compared with CON (P < 0.01), and urea treatments had greater PUN than biuret (P < 0.01). In addition, PUN was greater (P = 0.02) for D than for 2D treatments. In Exp. 2, pre- and postcalving (within 14 d and 24 h after calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for CON. These results suggest that supplements containing urea or biuret as the primary source of supplemental N can be effectively used by lambs and cows consuming low-quality forage, even when provided every other day.  相似文献   

4.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

5.
Six wether lambs (31 kg) were randomly assigned to two treatments (three lambs/treatment): a high protein intake (HP; 21 g N/d) or a low protein intake (LP; 12 g N/d). Each lamb received 860 g/d dry matter (DM) of a pelleted diet (75% corn-soybean meal, 25% cottonseed hulls) offered hourly in 24 equal portions. Single injections of 15N-labelled compounds were made into the ruminal NH3-N and blood urea-N pools to measure the rate of flux through, and transfer of N between, these and the bacterial N pool. Total tract digestibilities of DM and N were lower (P less than .05) for the LP than the HP treatment. Abomasal flows of total, feed or bacterial N tended to be greater (P greater than .05) in lambs fed HP than LP. Lambs fed HP excreted more (P less than .01) urinary N, yet retained a greater (P less than .01) amount of N than lambs fed LP (6.2 vs 1.8 and 9.7 vs 4.1 g N/d, respectively). Pool size and production rate for both ruminal NH3-N and blood urea-N were greater (P less than .05) for the HP than LP treatment. Lambs consuming HP degraded more (P less than .05) blood urea-N in the gastro-intestinal tract (13.4 vs 6.9 g N/d); however, lambs fed LP degraded a greater (P less than .05) percentage of synthesized body urea-N (88.7 vs 71.8%). Ruminal NH3-N absorption was greater (P less than .01) for the HP than LP treatment (3.1 vs .5 g N/d). Although the percentage of bacterial N derived from ruminal NH3-N was similar (P greater than .05) between diets (51.1 vs 63.9), a greater (P less than .05) percentage of bacterial N was derived from blood urea-N in lambs fed LP than HP (77.1 vs 30.2%). Lambs fed LP incorporated a greater (P less than .10) amount of blood urea-N into bacterial N than lambs fed HP (5.5 vs 2.6 g N/d). These data are interpreted to suggest that blood urea-N may provide a substantial quantity of N for bacterial protein synthesis and, thus, may be an important source of protein in the deficient animal. In addition, urea recycling may play an important role in the recovery of ruminal NH3-N lost through absorption in animals fed a high level of protein.  相似文献   

6.
Two experiments were conducted to investigate the effect of inclusion of whole-crop pea (WCP) silages, differing in condensed tannin content, as a substitute for grass silage (GS) and soybean meal on lamb metabolism, performance, plasma metabolites, digestibility, and carcass characteristics. In both experiments lambs were offered either solely GS or a 50:50 mix on a DM basis of GS with either low-tannin (LTPS) or high-tannin (HTPS) pea silage ad libitum. Each forage mix was fed with either 400 g/d of low-protein (LP) concentrate or 400 g/d of LP with an additional 200 g/d of pelletized soybean meal (HP), resulting in 6 dietary treatments. Experiment 1 examined the effects of the diets on metabolism, digestibility, and N balance using 6 lambs in 4 periods of 21 d in an incomplete crossover design. Experiment 2 used 48 lambs and examined the effects of the diets on ADG, plasma metabolites, and carcass characteristics over 56 d. Both experiments were analyzed using a 3 × 2 factorial arrangement of treatments. In Exp. 1, lambs offered the LTPS diets had a greater (P < 0.05) digestibility of DM and OM than those offered the GS diets. Lambs offered the WCP silages had an increased (P < 0.05) N intake, N output, and digestibility of GE compared with those offered GS. Mean N digestibility was greatest (P < 0.05) in lambs offered LTPS. Lambs offered HP diets had increased (P < 0.001) digestibility of DM, OM, GE and N, and N- intake, output, retention, and digestibility compared with those offered the LP diets. In Exp. 2, there was no effect (P > 0.05) of forage type on intake, slaughter BW, or feed conversion efficiency (FCE). However, lambs offered the LTPS had a greater (P < 0.05) ADG than those offered the GS diets. Feeding diets containing HP increased (P < 0.001) total DMI, slaughter BW, ADG, and FCE. Lambs offered the WCP had a greater (P < 0.05) plasma β-hydroxybutyrate and urea concentration compared with those offered the GS diets. Feeding lambs HP diets increased (P < 0.05) plasma urea and total protein. Forage mix had no effect (P > 0.05) on carcass composition except for fat depth, which was greater (P < 0.05) in lambs offered WCP silage. Diets containing the HP increased (P < 0.05) carcass weight, hind leg circumference, chop dimensions, and kidney weight. It was concluded that lambs offered LTPS performed better than those offered GS and that LTPS has a concentrate sparing effect. Additionally, the increased tannin concentration in HTPS did not increase performance over lambs offered either GS or LTPS.  相似文献   

7.
Nitrogen metabolism by lactating ewes and their lambs   总被引:1,自引:0,他引:1  
Twenty multiparous ewes and their newborn lambs were assigned to a 2 x 2 factorial experiment in which ewes were fed ad libitum either a moderate (MP, 15%) or a low (LP, 10%) CP diet and nursed either twin (T) or single (S) lambs. Nitrogen (N) balance trials were conducted on both the ewes and lambs during wk 2, 4 and 8 of lactation. Nitrogen balance, N digested and the portion of digested N retained were greater (P less than .01) with the MP diet. Nitrogen retention and serum urea-N values were lower for the ewes nursing T lambs. Plasma beta-hydroxybutyrate and serum glucose values were lower (P less than .01) for ewes fed the LP diet, and certain plasma amino acids and the ketogenic amino acids were lower with the LP diet. Insulin increased (P less than .01) with time throughout lactation. Triiodothyronine (T3) concentrations were higher (P less than .01) in ewes nursing T lambs. Thyroxine (T4) was greater (P less than .04) with the LP diet and greater (P less than .01) for ewes nursing T lambs. The T4:T3 ratio was lower (P less than .02) in the ewes consuming LP. The portion of the ewe's retained N used for milk synthesis was lower (P less than .01) with the MP diet. Ewes fed LP and nursing T lambs utilized all of their retained N plus a portion of their body protein reserves for milk production by the 2nd wk of lactation. Body weights of creep-fed lambs were not changed by protein content of the ewe's diet.  相似文献   

8.
Two experiments were conducted to evaluate the influence of supplemental protein concentration on the intake and utilization of dormant range forage by beef cattle. In Exp. 1,97 pregnant Hereford x Angus cows (avg wt = 454 kg) were assigned randomly to three isocaloric treatment supplements: 1) low protein (LP), 13% CP; 2) moderate protein (MP), 25% CP; and 3) high protein (HP), 39% CP. In Exp. 2, 15 ruminally and 12 esophageally cannulated steers (avg wt = 319 and 355 kg, respectively) were assigned randomly to LP, MP and HP treatments and were used in a 22-d winter grazing trial to evaluate forage intake and utilization characteristics. In Exp. 1, cow body condition (BC) and BW changes responded in linear (P less than .01) and quadratic (P less than .01) fashions to increasing protein concentration, with MP and HP displaying the least BC and BW loss from trial initiation (d 1) through d 84. From d 84 to calving (avg calving date = d 120), only the HP supplement continued to be effective in minimizing BC loss (P less than .01). Calf birth weight tended (P = .17) to increase in a linear fashion to increasing supplemental protein concentration, but calf ADG and cow reproductive efficiency were unaffected (P greater than .10). In Exp. 2, forage OM intake responded in a quadratic fashion (P less than .10), with the MP treatment having the highest NDF digestibility and ruminal OM fill. In conclusion, beef cow BC and BW losses during the winter grazing period were minimized with increasing supplemental CP concentration. Intake and utilization of dormant forage by steers were improved with moderate (26%) levels of CP in the supplement.  相似文献   

9.
Two experiments were conducted to determine the effects of supplemental CP source and level of urea on intestinal amino acid (AA) supply and feedlot performance of lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). In Exp. 1, five cannulated (ruminal, duodenal, and ileal) crossbred wethers (61 kg) were used in a 5 x 5 Latin square design. Treatments consisted of different sources of CP and included soybean meal (SBM), a combination of urea, distillers dried grains (DDG), and fish meal, each provided an equal portion of supplemental CP (UDF), and three levels of urea (17, 33, and 50% of supplemental CP) fed in combination with DDG (U17, U33, and U50). Organic matter and N digestibilities decreased (P less than .05) when lambs were fed U17 compared with those fed SBM. There were no differences (P greater than .05) in bacterial N or AA flows to the duodenum due to CP source despite large differences in ruminal NH3 N concentrations and lower ruminal OM digestion when lambs were fed U17. Duodenal nonbacterial N and AA flows were highest (P less than .05) in lambs fed U17 and UDF and lowest when lambs were fed U50 and SBM. Lysine concentration in duodenal digesta decreased with incremental increases in DDG. In Exp. 2, 30 individually penned ram lambs (33 kg) were allotted to five CP treatments in a randomized complete block design. Treatments were similar to those of Exp. 1, with the exception that U17 was replaced by a 14% CP diet with SBM as the supplemental CP source; all other diets were formulated to contain 12% CP. Lambs fed U50 had decreased (P less than .08) ADG and gain/feed compared with all other treatments, and lambs fed UDF had greater (P less than .05) ADG and gain/feed than lambs fed U33. It was concluded that 17% of the supplemental CP from urea seems adequate to maximize bacterial protein synthesis and that no more than 33% of the supplemental CP should be provided by urea in diets based on AHPWS. Feeding a combination of ruminally resistant protein sources with complementary AA profiles of lysine and methionine (UDF) may enhance quality of protein entering the duodenum and feedlot performance.  相似文献   

10.
Seventeen crossbred lambs were assigned randomly to low-protein (LP; 8% crude protein [CP]; n = 9) and high-protein (HP; 13% CP; n = 8) diets for 9 weeks. The final body weight, average daily feed intake (ADFI), and average daily gain (ADG) of the HP lambs were significantly higher (P < 0.05) than the LP lambs; however, gain to feed ratio (G:F) for the LP lambs was significantly higher (P < 0.05) than the HP lambs. Hot carcass weight (HCW), adjusted fat thickness, and drip loss of longissimus dorsi (LD) muscle were significantly higher (P < 0.05) for the HP than LP lambs. In contrast, instrumental color values L*, a*, b*, C*, and hue angle (H) of meat from the LP lambs scored significantly higher (P < 0.05) than the HP lambs. The LD muscle from HP lambs had significantly greater CLA of cis-9 trans-11 isomer (P < 0.05) than the LP lambs. The gene expression of metabolism and meat quality-related genes of LP was significantly higher than HP (P < 0.05). These results suggest that a higher dietary CP level promotes growth performance for finishing lambs, whereas lower dietary CP level is beneficial for meat quality, especially when evaluating color characteristics in the final product.  相似文献   

11.
Eight wether lambs (mean BW = 28.8 kg) with ruminal and abomasal cannulas were assigned to either thermally neutral or high ambient temperature treatments. Within each temperature, lambs were randomly allotted to dietary treatments consisting of a basal diet (60% corn and 24% cottonseed hulls) either with (high; 11.4% CP) or without (control; 10.1% CP) added ruminal escape CP as fish meal and with (high) or without (control) 5% added ruminally inert fat in a 2 x 2 factorial treatment arrangement using a Latin square design. Lambs were fed 606 g of DM/d in each period, which consisted of a 10-d adjustment followed by 6 d of sample collection. High temperature increased (P less than .05) respiration rate, evaporative water loss, and rectal temperature. When compared with controls, lambs fed high escape CP retained more N when exposed to high temperatures (2.8 vs 3.6 g of N/d) and less N at neutral temperatures (3.3 vs 3.1 g of N/d; temperature x escape CP; P less than .05). Retention of N was greater (P less than .05) in lambs fed high than in those fed control fat (3.8 vs 2.7 g/d). Lambs fed high vs control escape CP had greater abomasal feed N flow (percentage of intake) when fed high-fat diets (77.3 vs 56.1%) but similar dietary N flow when fed control fat diets (55.8 vs 54.3%; fat x escape CP; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Growing male Synthetic I (1/2 Finnish Landrace x 1/4 Dorset x 1/4 Rambouillet) lambs were used in two experiments (64 lambs in Exp. 1 and 63 in Exp. 2) to test the hypothesis that dietary CP level (9 or 14% of diet as fed) and(or) clinoptilolite (clino; 0 or 2% of diet) affects growth and tissue mineral concentrations of growing lambs fed supplemental Cu. Lambs were individually fed their respective diets ad libitum and killed after 12 wk (Exp. 1) or 16 wk (Exp. 2) to obtain carcass measurements, organ weights and liver mineral concentrations. In Exp. 1, 20 ppm added Cu (as CuSO4.5H2O) increased mortality and depressed BW gain (P less than .01) and daily feed intake (P less than .05) in the presence or absence of clino and at both levels of CP. Liver Cu concentration was greater (P less than .01) in lambs fed added Cu than in those not fed Cu (408 ppm vs 110 ppm, respectively). Neither CP nor clino affected liver Cu concentration. Clinoptilolite increased daily gain of lambs fed high CP but not low CP (P less than .01). In Exp. 2, clino in the diet had no effect on daily gain or daily feed, but 20 ppm Cu addition depressed daily gain (P less than .01) and gain/feed (P less than .07). Organ weights and levels of trace elements other than Cu in the liver generally were not affected by diet in either experiment. It is concluded that high dietary CP or 2% dietary clino did not protect against toxic signs of Cu when Cu was added to the basal diet (10 ppm Cu) at 10 or 20 ppm.  相似文献   

13.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

14.
We conducted two experiments to evaluate the effect of the ionophore laidlomycin propionate (LP) on steer performance and ruminal N metabolism. Experiment 1 was a 91-d growth study evaluating the growth and ruminal characteristics of steer calves consuming supplemental LP. Steers (n = 96; 255 +/- 3 kg; four steers/pen; six pens/treatment) were used in a randomized complete block design with a 2 x 2 factorial arrangement of treatments consisting of two levels of dietary CP (formulated to be 10.5 and 12.5% of DM) with and without LP (11 mg/kg diet DM). Ruminal fluid was collected via stomach tube on d 91 from one steer randomly selected from each pen. No CP x LP interactions were observed with performance data (P > .64). Final weight and total gain were greater (P < .07) for 12.5% CP and LP compared with 10.5% CP and control steers, respectively. Also, DMI was increased (P = .08) with 12.5% CP but not with LP supplementation (P = .36). In addition, ADG and gain:feed ratio were greater (P < .03) for both 12.5% CP and supplemental LP. Ruminal NH3 N concentration was greater (P < .09) with 12.5% CP and LP. Total VFA concentration and molar proportion of acetate were not affected by treatment (P > .11). However, propionate concentration was increased (P < .09) with 12.5% CP and LP, and acetate:propionate was lower (P = .02) with LP supplementation. In Exp. 2, six steers were used in a replicated 3 x 3 Latin square design to compare ruminal fermentation and protein degradation in steers without ionophore feeding or adapted to LP or monensin. In vitro deamination of amino acids by adapted ruminal microbes was also assessed. Ionophore supplementation decreased (P = .07) ruminal NH3 N concentration compared with control steers, and LP increased (P = .02) ruminal NH3 N compared with monensin. Molar proportion of acetate was decreased (P = .02) and propionate increased (P = .01) with ionophore treatment. Consequently, ionophore supplementation depressed the acetate:propionate ratio (P = .01). In situ degradation rate of soybean meal (SBM) CP was greater (P = .09) with ionophore treatment, but estimates of SBM undegradable intake protein were not altered by treatment (P > .25). Microbial specific activity of net NH3 N release and alpha-amino N degradation were decreased (P < .04) with ionophores. Based on this study, LP and monensin did not affect the extent of ruminal degradation of SBM CP but decreased amino acid deamination.  相似文献   

15.
The effects of protein and energy intakes by primiparous sows during a 28-d lactation on thyroxine (T4) and urea concentrations in blood serum of sows, and sow and litter performance were examined in two experiments. Dietary treatments were protein intakes of 380 (LP) and 760 (HP) g of crude protein X sow-1 X d-1 and energy intakes of 8 (LE) and 16 (HE) Mcal of metabolizable energy (ME) X sow-1 X d-1 in a 2 X 2 factorial arrangement. In Exp. 1 (34 sows), neither protein nor energy intake affected serum T4 concentrations. In both experiments, serum urea concentrations during lactation were influenced by both protein (P less than .001) and energy (P less than .001) intakes. In Exp. 2 (221 sows), sows fed LP or LE lost more weight (P less than .001) during lactation than sows fed either HP or HE. Backfat loss was greater (P less than .001) in sows fed diets of LE than HE, whereas sows fed HP lost more backfat (P = .016) than sows fed LP. Pig weights on d 28 were influenced by both protein (P less than .001) and energy (P = .038), with sows that were provided high intakes of either protein or energy having heavier pigs. Litter weight at weaning was heavier (P less than .005) for sows consuming HP. Sows fed LP had larger litters at d 14 (P = .051) and 28 (P = .046) than sows fed HP. Sow energy intake had no effect on litter size or weight. Percentages of sows in estrus by 7, 14 and 35 d postweaning were higher (P less than .004, P less than .030 and P less than .060, respectively) for sows fed HP than LP, whereas sow energy intakes had no effect on the interval from weaning to first estrus.  相似文献   

16.
In Exp. 1, 72 Targhee lambs (initial BW 22.1+/-.3 kg) were used to determine the effects of energy source (alfalfa pasture vs limit-fed, all-concentrate) and ionophore addition on performance, visceral organ mass, and carcass characteristics. There were no differences (P > . 10) in ADG or gain/ feed due to ionophore supplementation. Lambs that grazed alfalfa had greater (P < .05) liver, omasum, abomasum, small intestine, cecum, and large intestine weights than did lambs fed the concentrate diet. Lambs fed the concentrate diet had greater (P < .01) hot carcass weights, larger (P < .01) loin eye areas, and greater (P < .001) dressing percentages than lambs that grazed alfalfa. In Exp. 2, lambs offered the concentrate diet had greater (P < .001) DM and OM digestibilities than lambs offered alfalfa (89.5 and 91.1 vs 72.4 and 74.2%, respectively). Apparent and true N digestibilities were greater (P < .001) for the concentrate diet than for alfalfa (90.9 and 101.7 vs 77.7 and 91.9%, respectively). Likewise, grams of N retained per day were twice as great (P < .001) with the concentrate diet than with alfalfa (14.9 vs 6.0 g/ d). The greater visceral organ mass and resulting increases in energy and protein requirements in lambs that grazed alfalfa were probably responsible for the lesser hot carcass weight and dressing percentage compared with lambs fed 100% concentrate.  相似文献   

17.
The effects of energy and protein intakes by 32 primiparous sows during a 28-d lactation on sow and litter performance and sow body composition and bone properties were examined. Dietary treatments were energy intakes of 8 (LE) and 16 (HE) Mcal of ME/d and protein intakes of 380 (LP) and 760 (HP) g of CP/d in a 2 x 2 factorial arrangement. Sows fed diets that were inadequate in either energy or protein lost more weight than did sows fed the HE-HP diet, but backfat losses were greater when energy intake was deficient than when protein was deficient. Carcass measurements were influenced in a similar manner, with energy intake affecting (P less than .001) backfat thickness and protein intake affecting (P less than .05) longissimus muscle area. Heart, kidneys and liver of sows fed LP diets weighed less (P less than .01) and contained less water and protein (P less than .05) than those of sows fed HP. Sows fed LE had heart, liver and viscera that weighed less (P less than .05) than those of sows fed HE. There was less fat (P less than .05) in the heart, lung, liver and viscera of sows fed LE than in those of sows fed HE. Carcass components of the supraspinatus muscle and standardized sections through the longissimus muscle and right shoulder weighed less (P less than .05) from sows fed LP rather than HP, and these components contained less water and protein. Sows fed the LE diets had less fat in the loin soft tissue section, right shoulder section and supraspinatus muscle than sows fed HE. Bone composition and strength were not influenced by dietary treatment. The composition of weight lost during lactation was diet-dependent. Sows fed diets that were deficient in protein but adequate in energy lost large amounts of protein from muscles and internal organs. Energy deficiency resulted primarily in fat loss.  相似文献   

18.
An experiment was conducted to determine the influence of postfast dietary CP and P concentration on the repletion of N, P, Ca, and Mg lost during a 3-d fast in sheep. Four Suffolk wether lambs averaging 35 kg were used in a 4 x 4 Latin square design. Lambs were fed a control diet (700 g/d; as-fed basis) for 14 d and were then deprived of feed and water for 3 d. Lambs were then fed one of four isoenergetic realimentation diets: 1) low CP/low P, 2) low CP/high P, 3) high CP/high P, and 4) high CP/very high P. Realimentation N and Mg intakes were 9.8 and 1.1 g/d for lambs fed the low-CP diet and 18.1 and 1.7 g/d for lambs fed the high-CP diets, respectively. Realimentation P intakes were 1.40, 2.36, 2.66, and 3.82 g/d for lambs fed Diets 1, 2, 3, and 4, respectively. Nitrogen, P, Ca, and Mg apparent digestibility and balance and serum urea N, free fatty acids, P, Ca, Mg, and alkaline phosphatase were determined during the prefast, fast, and realimentation periods. Lambs fed the high-CP diets had higher (P less than .05) N and P digestibility and balance than lambs fed the low-CP diet. Increasing the dietary P content did not affect (P greater than .15) P balance or digestibility. In general, the realimentation diet fed did not affect (P greater than .15) serum concentrations of free fatty acids, alkaline phosphatase, inorganic P, Ca, or Mg.  相似文献   

19.
Twenty-four wether lambs (BW = 37.5 +/- 0.8 kg) were used in a 64-d randomized complete block design experiment to evaluate the effect of oscillating dietary CP with undegradable intake protein (UIP) on diet digestibility, N retention, and gastrointestinal (GI) organ mass. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) and 35% corn-based supplement, and were formulated to contain the same amount of degradable intake protein (9.6% of dry matter), plus additional UIP (from SoyPLUS) to accomplish CP levels above 13%. Beginning on d 52, N balance collections were conducted for 8 d, after which lambs were killed on d 62 and 64 of the trial for measurement of GI organ mass. Because intake was restricted to 3.0% of initial body weight (dry matter basis), dry matter intake did not differ (P > or = 0.67) and no treatment effects (P > or = 0.36) on ADG, feed efficiency, or total tract DM digestibility were observed. Increasing dietary CP from 13 to 17% linearly increased (P = 0.0001) N digestibility, but lambs fed ACP had lower (P = 0.07) total tract N digestibility than those fed 15% CP daily. Although urinary N excretion increased linearly (P = 0.0001) with increasing CP, a linear increase (P = 0.07) was observed in N retention (g/d) with increasing dietary CP. Although the quantity of N retained by lambs fed ACP was not statistically different (g/d, P = 0.19; % of digested N, P = 0.23) from those fed 15% CP daily, N retention in lambs fed ACP was 42% lower than in those fed 15% CP daily (1.8 vs 3.1 g/d, respectively). Increasing CP linearly decreased (P < or = 0.09) weights of the reticulorumen, abomasum, and small intestine, but did not affect (P > or = 0.16) liver or omasum weights. Length of the small intestine was not affected (P > or = 0.45) by treatment, but lambs fed ACP had greater (P = 0.03) small intestine weights than those fed 15% CP daily. Increasing dietary CP linearly decreased (P = 0.03) total GI organ mass, and lambs fed ACP had a greater (P = 0.03) total GI organ mass than those fed 15% CP daily. Oscillating dietary CP may increase the weights of the GI organs, which may subsequently have negative effects on N and energy metabolism in the animal. Likewise, the potential for decreased GI organ mass in response to increased supply of CP with UIP deserves further investigation.  相似文献   

20.
In Exp. 1, early-weaned Targhee and Polypay crossbred lambs (60 ewes and 66 rams; initial BW 24 +/- 1.0 kg) were used in a 2 x 3 factorial experiment to determine the effects of corn processing (whole shelled corn [WSC] or ground and pelleted corn [GC]) in combination with supplemental fiber (none [control]; soybean hulls, SBH [highly digestible]; or peanut hulls, PH [highly indigestible]) on DMI, ADG, feed efficiency, and visceral organ weight. For the total trial, WSC resulted in a 4% increase (P < .01) in ADG vs GC, and supplemental fiber resulted in increased (P < .01) DMI and ADG vs the control diet. Experiment 2 was conducted using 12 Targhee and Polypay crossbred wether lambs (initial BW 25 +/- 7 kg) to determine the effects of corn processing and fiber source in high-concentrate diets on diet digestibility and N retention using the same diets as in Exp. 1. Lambs fed WSC had greater (P < .001) apparent N digestion, true N digestion, and N retention (P < .01) than those fed GC. The apparent digestibilities of DM, OM, and NDF were greater (P < .001) for WSC than for GC diets. Peanut hulls resulted in decreased (P < .01) DM, OM, and NDF apparent digestibilities compared with the control and SBH diets. Starch digestion was not affected (P > .10) by diet. Whole corn resulted in improved DM, OM, NDF, and N digestibility compared with GC. Overall, both the SBH and PH diets resulted in greater DMI and ADG than the control diet, which lacked supplemental fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号