首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine whether hyoscine has a sparing effect on the volume of dobutamine required to maintain mean arterial pressure (MAP) at 70 mmHg in horses anaesthetized with halothane. STUDY DESIGN: Prospective, randomized, controlled clinical trial. ANIMALS: Twenty adult horses weighing 507 +/- 97 kg (mean +/- SD), aged 10 +/- 5 years. MATERIALS AND METHODS: Pre-anaesthetic medication in all horses was intramuscular (IM) acepromazine (40 mug kg(-1)) and intravenous (IV) detomidine (0.02 mg kg(-1)). Anaesthesia was induced with ketamine (2.2 mg kg(-1) IV) and diazepam (0.02 mg kg(-1) IV), and maintained with halothane in oxygen. Horses breathed spontaneously. Flunixin (1.1 mg kg(-1) IV) was given to provide analgesia. Heart rate, ECG, invasive arterial pressure, respiratory rate, percentage end-tidal carbon dioxide, percentage end-tidal halothane and partial pressure of oxygen and carbon dioxide in arterial blood and blood pH were monitored. Dobutamine was infused by an infusion pump to maintain MAP at 70 mmHg. Horses were randomly assigned to receive saline or hyoscine (0.1 mg kg(-1)) IV 30 minutes after induction. The heart rate, MAP and volume of dobutamine infused over 30-minute periods were measured and analysed statistically using a one-way anova. RESULTS: After administration of hyoscine, heart rate increased for 10 minutes (p < 0.01) and MAP for 5 minutes (p < 0.01). There was no difference in the volume of dobutamine infused over 30 minutes between horses given hyoscine or saline, although there was a wide individual variation in dobutamine requirements. No side effects of hyoscine were seen. CONCLUSIONS: The increase in heart rate and blood pressure that occurs after 0.1 mg kg(-1) hyoscine is given IV in anaesthetized horses, is of short duration and does not significantly alter the amount of dobutamine required to maintain arterial pressure over the next 30 minutes. Clinical relevance The short duration of action of 0.1 mg kg(-1) hyoscine IV may limit its usefulness for correction of hypotension in horses anaesthetized with halothane. Further work is necessary to investigate the effects of higher or repeated doses or constant rate infusions of hyoscine.  相似文献   

2.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

3.
OBJECTIVE: To study the effects of morphine on haemodynamic variables, blood gas values and the requirement for additional anaesthetic drugs in horses undergoing surgery. STUDY DESIGN: Prospective randomized study. METHODS: Thirty-eight client-owned horses, ASA(American Society of Anesthesiologists) category I or II, undergoing elective surgical procedures, were studied. Horses were divided between two groups, and were paired according to operation, anaesthetist, body position during surgery, mass and breed. Group M+ received morphine by intravenous (IV) injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) throughout anaesthesia. Group M- received the same anaesthetic technique (pre-anaesthetic medication with romifidine (100 microg kg(-1)) IV; induction with ketamine (2.2 mg kg(-1)) and diazepam (50 microg kg(-1)) IV; maintenance with halothane), except that morphine was excluded. Both groups received flunixin IV (1.1 mg kg(-1)) before surgery. Both groups also received 50% nitrous oxide for the first 10 minutes of anaesthesia. During anaesthesia, end-tidal halothane was maintained at 0.9% (+/-0.1%) in both groups. Heart rate (HR) and respiratory rate (fr), systolic, mean and diastolic arterial pressures were recorded every 5 minutes. Arterial blood samples were analysed every 20 minutes. Additional anaesthetics (ketamine and midazolam) were administered whenever the horse moved. Dobutamine was infused to maintain mean arterial pressure (MAP) > 58 mm Hg, but was discontinued when MAP reached 68 mm Hg. Mechanical ventilation was imposed when PaCO(2) exceeded 9.3 kPa (70 mm Hg). RESULTS: Haemodynamic data (HR and MAP) and blood gas measurements were analysed using repeated measure analysis using a mixed covariance pattern model (SAS version 8.2). A Student's t-test was used to investigate differences between groups in the doses of additional anaesthetics required. There were no significant differences between M+ or M- groups in MAP (p = 0.65), HR (p = 0.74), PaO2 (p = 0.40) or PaCO2 (p = 0.20). Fewer horses in the M+ group received additional anaesthetics (15.8% compared to 21.1% in M- group), and the mean dose of ketamine required was higher in the M- group (mean +/- SD: M-, 0.93 +/- 0.70; M+, 0.45 +/- 0.17). These differences were not statistically significant (p = 0.28). CONCLUSIONS: Pre-anaesthetic and peri-operative morphine administration is not associated with significant haemodynamic or ventilatory changes. Horses receiving morphine tended to receive fewer and lower doses of additional anaesthetic drugs, although this was not statistically significant.  相似文献   

4.
OBJECTIVE: To compare the effects of two balanced anaesthetic protocols on end-tidal isoflurane (Fe'ISO), cardiopulmonary performance and quality of recovery in horses. DESIGN: Prospective blinded randomized clinical study. ANIMALS: Sixty-nine client-owned horses, American Society of Anesthesiologists category I and II, undergoing elective surgery. METHODS: The horses were premedicated with acepromazine (0.03 mg kg(-1)) IM 30-60 minutes before induction of anaesthesia and were randomly assigned to one of two treatments: in group L (37 horses) xylazine (1 mg kg(-1)) and in group M (31 horses) medetomidine (7 microg kg(-1)) was administered IV for sedation. Anaesthesia was induced 5 minutes later with ketamine (2.2 mg kg(-1)) and diazepam (0.02 mg kg(-1)) IV and maintained with isoflurane in oxygen/air (initial FIO2 0.40-0.50) and a constant rate infusion (CRI) of either lidocaine (2 mg kg(-1)/15 minutes loading dose followed by 50 microg kg(-1) minute(-1)) (group L) or medetomidine (3.5 microg kg(-1) hour(-1)) (group M). If horses showed movement or nystagmus, additional thiopental or ketamine was administered. Heart rate, mean arterial pressure (MAP), Fe'ISO and arterial blood gases were measured. Cardiac output was measured with the lithium dilution method in 10 (group L) and 11 (group M) horses every 45 minutes. Recovery was scored. RESULTS: Heart rate and the cardiac index (CI) were significantly higher in group L with changes over time. In group M, MAP was significantly higher during the first 50 minutes. Group L needed more additional ketamine and thiopental to maintain a surgical plane of anaesthesia and Fe'ISO was significantly higher from 70 minutes. Recovery was longer in group M and of better quality. The significance level was set at p < 0.05. CONCLUSIONS AND CLINICAL RELEVANCE: In group M, maintenance of stable anaesthetic depth was easier and lower Fe'ISO was required to maintain a surgical plane of anaesthesia. Recoveries were longer but of better quality. The CI was higher in group L but cardiovascular function was generally well maintained in both groups.  相似文献   

5.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

6.
OBJECTIVE: To evaluate propofol for induction and maintenance of anesthesia, after detomidine premedication, in horses undergoing abdominal surgery for creation of an experimental intestinal adhesion model. STUDY DESIGN: Prospective study. ANIMALS: Twelve horses (424 +/- 81 kg) from 1 to 20 years of age (5 females, 7 males). METHODS: Horses were premedicated with detomidine (0.015 mg/kg i.v.) 20 to 25 minutes before induction, and a propofol bolus (2 mg/kg i.v.) was administered for induction. Propofol infusion (0.2 mg/kg/min i.v.) was used to maintain anesthesia. The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by muscle relaxation, occular signs, response to surgery, and cardiopulmonary responses. Oxygen (15 L/min) was insufflated through an endotracheal tube as necessary to maintain the SpO2 greater than 90%. Systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressures, heart rate (HR), electrocardiogram (ECG), respiratory rate (RR), SpO2 (via pulse oximetry), and nasal temperature were recorded at 15 minute intervals, before premedication and after induction of anesthesia. Arterial blood gas samples were collected at the same times. Objective data are reported as mean (+/-SD); subjective data are reported as medians (range). RESULTS: Propofol (2.0 mg/kg i.v.) induced anesthesia (mean bolus time, 85 sec) within 24 sec (+/-22 sec) after the bolus was completed. Induction was good in 10 horses; 2 horses showed signs of excitement and these two inductions were not smooth. Propofol infusion (0.18 mg/kg/min +/- 0.04) was used to maintain anesthesia for 61 +/- 19 minutes with the horses in dorsal recumbency. Mean SAP, DAP, and MAP increased significantly over time from 131 to 148, 89 to 101, and 105 to 121 mm Hg, respectively. Mean HR varied over time from 43 to 45 beats/min, whereas mean RR increased significantly over anesthesia time from 4 to 6 breaths/min. Mean arterial pH decreased from a baseline of 7.41 +/- 0.07 to 7.30 +/- 0.05 at 15 minutes of anesthesia, then increased towards baseline values. Mean PaCO2 values increased during anesthesia, ranging from 47 to 61 mm Hg whereas PaO2 values decreased from baseline (97 +/- 20 mm Hg), ranging from 42 to 57 mm Hg. Muscle relaxation was good and no horses moved during surgery: Recovery was good in 9 horses and acceptable in 3; mean recovery time was 67 +/- 29 minutes with 2.4 +/- 2.4 attempts necessary for the horses to stand. CONCLUSIONS: Detomidine-propofol anesthesia in horses in dorsal recumbency was associated with little cardiovascular depression, but hypoxemia and respiratory depression occurred and some excitement was seen on induction. CLINICAL RELEVANCE: Detomidine-propofol anesthesia is not recommended for surgical procedures in horses if dorsal recumbency is necessary and supplemental oxygen is not available (eg, field anesthesia).  相似文献   

7.
OBJECTIVE: To compare the disposition of lidocaine administered IV in awake and anesthetized horses. ANIMALS: 16 horses. PROCEDURE: After instrumentation and collection of baseline data, lidocaine (loading infusion, 1.3 mg/kg administered during 15 minutes (87 microg/kg/min); constant rate infusion, 50 microg/kg/min) was administered IV to awake or anesthetized horses for a total of 105 minutes. Blood samples were collected at fixed times during the loading and maintenance infusion periods and after the infusion period for analysis of serum lidocaine concentrations by use of liquid chromatography with mass spectral detection. Selected cardiopulmonary parameters including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2 were also recorded at fixed time points during lidocaine administration. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. RESULTS: Serum lidocaine concentrations were higher in anesthetized than awake horses at all time points during lidocaine administration. Serum lidocaine concentrations reached peak values during the loading infusion in both groups (1,849 +/- 385 ng/mL and 3,348 +/- 602 ng/mL in awake and anesthetized horses, respectively). Most lidocaine pharmacokinetic variables also differed between groups. Differences in cardiopulmonary variables were predictable; for example, HR and MAP were lower and PaO2 was higher in anesthetized than awake horses but within reference ranges reported for horses under similar conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia has an influence on the disposition of lidocaine in horses, and a change in dosing during anesthesia should be considered.  相似文献   

8.
Anaesthesia produced by xylazine (1.1 mg/kg IV) followed in 3–5 minutes by ketamine (2.2 mg/ kg IV) (X / K) was compared to anaesthesia produced by detomidine (0.02 mg/kg IV) followed in 15–25 minutes by ketamine (2.2 mg/kg IV) (D/K) in the same six horses. Quality of induction, recovery, muscle relaxation, coordination (before and after anaesthesia) and response to stimulus were subjectively evaluated. Heart rate, respiratory rate, mean blood pressure, hemoglobin saturation, arterial pH, CO2 and O2 were monitored. Recumbency time and number of attempts required to stand were recorded. Recumbency time was longer in all horses with X/K (median recumbency time of 27 min) than with D/K (median recumbency time of 22 min). No significant differences between treatments were seen for any other variable measured, although 2 horses did not appear to reach a surgical plane of anaesthesia with D/K.  相似文献   

9.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

10.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

11.
OBJECTIVE: To investigate the effect of buprenorphine pre-treatment on sufentanil requirements in female dogs undergoing ovariectomy. STUDY DESIGN: Randomized, 'blinded', prospective clinical study. ANIMALS: Thirty healthy female dogs referred for ovariectomy. MATERIALS AND METHODS: Dogs were randomly assigned to one of two pre-anaesthetic treatment groups. Those in the buprenorphine group (B) received buprenorphine 20 microg kg(-1) and acepromazine 0.03 mg kg(-1) IM. Control group (C) animals received an equal volume of NaCl 0.9% and acepromazine 0.03 mg kg(-1) IM. The anaesthetic technique was identical in both groups. Pre-anaesthetic medication consisted of intravenous (IV) sufentanil (1.0 microg kg(-1)) and midazolam (0.05 mg kg(-1)) and intramuscular atropine (0.03 mg kg(-1)). Anaesthesia was induced with propofol and maintained with a constant rate infusion of sufentanil (1.0 microg kg(-1) hour(-1)) and with oxygen-isoflurane. Ventilation was controlled mechanically. Ovariectomy was performed using a standard technique. Baseline heart rate (HR) and direct mean arterial blood pressure (MAP) were recorded before the first incision. Increases in HR and MAP of > or =20% over baseline and, or spontaneous ventilation were controlled using IV sufentanil (1.0 microg kg(-1)) repeated after 5 minutes if haemodynamic variables remained elevated or attempts at spontaneous ventilation persisted. Analysis of variance was used to determine group differences in mean and median HR and MAP and to compare the maximum HR and MAP attained during surgery. Poisson regression was used to compare the number of sufentanil injections required in both groups. RESULTS: Group B required 2.46 times more sufentanil injections (p = 0.00487) than dogs in group C to maintain haemodynamic stability and prevent spontaneous ventilation during surgery. Group B dogs also had a significantly higher (p = 0.034) marginal mean of the log maximum MAP (4.756 +/- 0.036) compared with group C (4.642 +/- 0.036). CONCLUSIONS: Pre-treatment with buprenorphine appears to negatively influence the antinociceptive efficacy of intra-operative sufentanil. CLINICAL RELEVANCE: Withholding buprenorphine therapy 6-8 hours before anaesthesia incorporating pure mu receptor agonists is probably advisable. Alternative methods of analgesia should be provided in this period.  相似文献   

12.
OBJECTIVE: To determine whether the bispectral index (BIS) can be used as an indicator of degree of CNS depression in isoflurane-anesthetized horses. ANIMALS: 10 Standardbred and 6 Norwegian cold-blooded trotter stallions admitted for routine castration. PROCEDURE: A 2-channel referential electrode configuration was used to record EEG for calculation of BIS by the EEG monitor. The BIS was calculated before (awake) and after (sedated) administration of detomidine (0.01 mg/kg of body weight, IV) and butorphanol (0.01 mg/kg, IV). Anesthesia was induced with ketamine hydrochloride (2.5 mg/kg, IV) and diazepam (0.04 mg/kg, IV) and maintained with isoflurane delivered in oxygen. The BIS was calculated after 30 minutes of equilibration at an end-tidal isoflurane concentration of 1.4% (n = 8) or 1.9% (8) and recorded continuously during surgery. RESULTS: Bispectral index was significantly less in sedated and anesthetized horses, compared with awake horses. However, BIS was not significantly different between sedated and anesthetized horses. Mean BIS in horses anesthetized at 1.9% isoflurane was significantly greater, compared with horses anesthetized at an end-tidal concentration of 1.4%. Four horses in the 1.4% group moved during surgery, and BIS increased immediately prior to movement in 2 of these horses. CONCLUSIONS AND CLINICAL RELEVANCE: BIS is not a precise indicator of degree of CNS depression in isoflurane-anesthetized horses. Thus, determination of BIS may not be a useful technique for monitoring anesthetic depth in isoflurane-anesthetized horses.  相似文献   

13.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Objective To compare the effect of orally delivered detomidine on head posture when administered alone or in combination with two different food items, and to determine the serum concentrations of detomidine after oral delivery. Study Design Prospective randomized experimental study. Animals Fifteen adult grade mares weighing 328–537 kg. Methods The horses were randomly assigned to one of the three treatment groups (five horses each). The groups were given detomidine (0.06 mg kg?1): alone; mixed with 3 mL of an apple sauce and gum mixture; or mixed with 3 mL molasses. Head droop, measured before treatment and at 15, 30, 45, 60, 75, 90, and 105 minutes after treatment, was used to evaluate sedation. Yohimbine (0.1 mg kg?1 IV) was administered after the 90‐minute evaluation. Blood samples were collected from the detomidine‐alone group before treatment and at 15, 30, 45, 60, 75, and 90 minutes after treatment. Sera were analyzed for detomidine equivalent concentrations by an ELISA. Head droop percentages were compared using a repeated measures analysis of variance. Results Significant mean head droop developed in each treatment group by 30 minutes and persisted until reversal with yohimbine. After yohimbine administration, head positions returned to 87–91% of pre‐treatment levels. There were no significant differences among the oral treatment groups at any time. Mean serum detomidine equivalents increased slowly until 45‐minute post‐administration, but never exceeded 30 ng mL?1. Conclusions Orally administered detomidine results in measurable serum drug concentrations using any of the delivery mediums investigated, and can be expected to produce profound head droop in horses approximately 45 minutes after administration.  相似文献   

15.
OBJECTIVE: To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. STUDY DESIGN: An experimental study using a cross-over design without randomization. ANIMALS: Eight clinically normal Standardbred trotters. MATERIALS AND METHODS: Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. RESULTS: Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p < 0.001) in HR during the first 25 minutes after sedation; while acepromazine had a varying effect on HR. For detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p < 0.001). In addition, a significant decrease was found in IVSs (the interventricular septum in systole; p < 0.001), LVFWs (the left ventricular free wall in systole; p = 0.002) and FS% (fractional shortening; p < 0.001). The frequency of pulmonary regurgitation was increased significantly (p < 0.001). Romifidine induced a significant increase in LVIDs (p < 0.001) and a significant decrease in IVSs (p < 0.001) and FS% (p = 0.002). Acepromazine had no significant effect upon any of the measured values. CONCLUSIONS: and clinical relevance The results indicate that sedation of horses with detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.  相似文献   

16.
17.
OBJECTIVE: To quantitate the dose- and time-related effects of IV administration of xylazine and detomidine on urine characteristics in horses deprived of feed and water. ANIMALS: 6 horses. PROCEDURE: Feed and water were withheld for 24 hours followed by i.v. administration of saline (0.9% NaCI) solution, xylazine (0.5 or 1.0 mg/kg), or detomidine (0.03 mg/kg). Horses were treated 4 times, each time with a different protocol. Following treatment, urine and blood samples were obtained at 15, 30, 60, 120, and 180 minutes. Blood samples were analyzed for PCV and serum concentrations of total plasma solids, sodium, and potassium. Urine samples were analyzed for pH and concentrations of glucose, proteins, sodium, and potassium. RESULTS: Baseline (before treatment) urine flow was 0.30 +/- 0.03 mL/kg/h and did not significantly change after treatment with saline solution and low-dose xylazine but transiently increased by 1 hour after treatment with high-dose xylazine or detomidine. Total urine output at 2 hours following treatment was 312 +/- 101 mL versus 4,845 +/- 272 mL for saline solution and detomidine, respectively. Absolute values of urine concentrations of sodium and potassium also variably increased following xylazine and detomidine administration. CONCLUSIONS AND CLINICAL RELEVANCE: Xylazine and detomidine administration in horses deprived of feed and water causes transient increases in urine volume and loss of sodium and potassium. Increase in urine flow is directly related to dose and type of alpha2-adrenergic receptor agonist. Dehydration in horses may be exacerbated by concurrent administration of alpha2-adrenergic receptor agonists.  相似文献   

18.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

19.
OBJECTIVE: The aim of this study was to evaluate the analgesic effect of intratesticular and intrafunicular lidocaine for the surgical castration of piglets and to investigate the degree of nociception induced by lidocaine injection. STUDY DESIGN: Prospective controlled experimental study. ANIMALS: Forty-seven male Norwegian landrace piglets with normal testicular anatomy, aged 22 (+/-2.6 SD) days and weighing 7.4 +/- 1.4 kg. MATERIALS AND METHODS: Anaesthesia was induced and maintained using halothane delivered in oxygen. End-tidal halothane was stabilized at 1.3% for 20 minutes before mean arterial blood pressure (MAP) pulse rate and electroencephalography (EEG) monitoring began. After 5 minutes of data collection, scrotal skin was desensitized with lidocaine before either an intrafunicular (IF) (n = 15) or an intratesticular (IT) (n = 16) lidocaine injection was made. Pigs in the control group (n = 16) did not receive lidocaine. Ten minutes later, a scalpel and an emasculator were used to cut the funiculus spermaticus. The MAP, pulse rate and EEG were monitored continuously for 5 minutes after castration. RESULTS: During castration, MAP increased significantly, while pulse rate and EEG theta power fell significantly more in control, compared with the IT or IF groups. EEG alpha power fell more in the control group than in the IF group. No significant differences were found between the IF and IT groups. EEG, MAP and pulse rate responses to castration in the control group were significantly larger than the response to lidocaine injection. CONCLUSION/CLINICAL RELEVANCE: Injecting lidocaine into the funiculus spermaticus or into the testes is effective in reducing signs of nociception caused by castration. Lidocaine injection is less noxious than castration without local anaesthetic.  相似文献   

20.
Cardiovascular effects of xylazine and detomidine in horses   总被引:6,自引:0,他引:6  
The cardiovascular effects of xylazine and detomidine in horses were studied. Six horses were given each of the following 5 treatments, at 1-week intervals: xylazine, 1.1 mg/kg, IV; xylazine, 2.2 mg/kg, IM; detomidine, 0.01 mg/kg, IV; detomidine, 0.02 mg/kg, IV; and detomidine, 0.04 mg/kg, IM. All treatments resulted in significantly decreased heart rate, increased incidence of atrioventricular block, and decreased cardiac output and cardiac index; cardiac output and cardiac index were lowest following IV administration of 0.02 mg of detomidine/kg. Mean arterial pressure was significantly reduced for various periods with all treatments; however, IV administration of 0.02 mg of detomidine/kg caused hypertension initially. Systemic vascular resistance was increased by all treatments. Indices of ventricular contractility and relaxation, +dP/dt and -dP/dt, were significantly depressed by all treatments. Significant changes were not detected in stroke volume or ejection fraction. The PCV was significantly reduced by all treatments. Respiratory rate was significantly decreased with all treatments, but arterial carbon dioxide tension did not change. Arterial oxygen tension was significantly decreased briefly with the 3 IV treatments only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号