共查询到20条相似文献,搜索用时 0 毫秒
1.
Adam Auckburally BVSc CertVA Diplomate ECVAA MRCVS Pat Pawson BVMS PhD Diplomate ECVAA MRCVS & Derek Flaherty BVMS DVA Diplomate ECVAA MRCA MRCVS 《Veterinary anaesthesia and analgesia》2008,35(4):319-325
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone. 相似文献
2.
《Veterinary anaesthesia and analgesia》2023,50(1):21-30
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI. 相似文献
3.
《Veterinary anaesthesia and analgesia》2023,50(1):31-40
ObjectiveTo investigate pharmacokinetics (PK) of fentanyl administered by target-controlled infusion (TCI), and to develop a PK model optimized by covariates for TCI in anaesthetized dogs.Study designProspective clinical study.AnimalsA group of 20 client-owned dogs with spinal pain undergoing anaesthesia for magnetic resonance imaging.MethodsFentanyl was administered as an infusion to 20 anaesthetized dogs using a TCI system incorporating a previously described fentanyl two-compartment PK. Arterial blood samples were collected at specific time points during the infusion and over 60 minutes post-infusion for measurement of fentanyl plasma concentrations. The predictive performance of the Sano PK model was assessed by comparing predicted and measured plasma concentrations. A population PK analysis was then performed using a nonlinear mixed-effect modelling approach, allowing inter- and intra-individual variability estimation. Finally, a quantitative stepwise evaluation of the influence of various covariates such as weight, body condition score, size, size-related age, sex and type of premedication on the PK model was considered.ResultsOverall predictive performance of the Sano PK set of variables was not clinically acceptable in anaesthetized dogs. Fentanyl PK was best described by a three-compartment model. Weight and sex were found to affect the volume of distribution of the central compartment. Addition of these two covariate/variable associations resulted in a reduction of the objective function value (OFV) from –340.18 to –448.34, and of the median population weighted residual and the median population absolute weighted residual from 16.1% and 38.6% to 3.9% and 20.3%, respectively. Fentanyl infusions at measured concentrations up to 5.4 ng mL–1 in sevoflurane-anaesthetized dogs resulted in stable anaesthesia and smooth recoveries without complications.Conclusions and clinical relevanceA population three-compartment PK model for fentanyl TCI in anaesthetized dogs was developed. Weight and sex have been detected and incorporated as significant covariates. 相似文献
4.
Cardiopulmonary effects of dexmedetomidine and ketamine infusions with either propofol infusion or isoflurane for anesthesia in horses 下载免费PDF全文
Tanya Duke‐Novakovski Carolina Palacios‐Jimenez Tara Wetzel Lisa Rymes Andres F Sanchez‐Teran 《Veterinary anaesthesia and analgesia》2015,42(1):39-49
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia. 相似文献
5.
An 18-month-old Lurcher was anaesthetized for surgical ligation of a patent ductus arteriosus using a target-controlled infusion (TCI) of propofol and a variable rate infusion of remifentanil. Before anaesthesia, radiographic and echocardiographic examination indicated that the dog had left-sided congestive heart failure and impaired left ventricular systolic function. Ramipril and furosemide were administered pre-operatively. Following pre-anaesthetic medication with morphine, 0.5 mg kg(-1), by intramuscular injection, and pre-oxygenation, remifentanil was infused for 5 minutes at 0.2 microg kg(-1) minute(-1), followed by induction of anaesthesia using intravenous propofol administered by TCI, set at a target concentration of 3.5 microg mL(-1) of propofol in blood. Tracheal intubation was performed and 100% oxygen delivered through a non-rebreathing (Bain) system and then a circle system in the operating theatre. Anaesthesia was maintained with propofol and remifentanil, adjusted according to clinical requirements. Peri-operative analgesia consisted of intercostal bupivacaine nerve block, with meloxicam, morphine and remifentanil. 相似文献
6.
ObjectivePropofol may cause adverse effects (e.g. apnoea, hypotension) at induction of anaesthesia. Co-induction of anaesthesia may reduce propofol requirements. The effect of fentanyl or midazolam on propofol dose requirements and cardiorespiratory parameters was studied.Study designRandomized, controlled, blinded clinical study.AnimalsSixty-six client owned dogs (35 male, 31 female, ASA I-II, age 6–120 months, body mass 4.7–48.0 kg) were selected.MethodsPre-medication with acepromazine (0.025 mg kg−1) and morphine (0.25 mg kg−1) was administered by intramuscular injection. After 30 minutes group fentanyl-propofol (FP) received fentanyl (2 μg kg−1), group midazolam-propofol (MP) midazolam (0.2 mg kg−1) injected over 30 seconds via a cephalic catheter and in a third group, control-propofol (CP), the IV catheter was flushed with an equivalent volume of heparinized saline. Anaesthesia was induced 2 minutes later, with propofol (4 mg kg−1minute−1) administered to effect. After endotracheal intubation anaesthesia was maintained with a standardized anaesthetic protocol. Pulse rate, respiratory rate (RR) and mean arterial pressure (MAP) were recorded before the co-induction agent, before induction, and 0, 2 and 5 minutes after intubation. Apnoea ≥30 seconds was recorded and treated. Sedation after pre-medication, activity after the co-induction agent, quality of anaesthetic induction and endotracheal intubation were scored.ResultsPropofol dose requirement was significantly reduced in FP [2.90 mg kg−1(0.57)] compared to CP [3.51 mg kg−1 (0.74)] and MP [3.58 mg kg−1(0.49)]. Mean pulse rate was higher in MP than in CP or FP (p = 0.003). No statistically significant difference was found between groups in mean RR, MAP or incidence of apnoea. Activity score was significantly higher (i.e. more excited) (p = 0.0001), and quality of induction score was significantly poorer (p = 0.0001) in MP compared to CP or FP. Intubation score was similar in all groups.Conclusions and clinical relevanceFentanyl decreased propofol requirement but did not significantly alter cardiovascular parameters. Midazolam did not reduce propofol requirements and caused excitement in some animals. 相似文献
7.
Fernando Martinez‐Taboada Elizabeth A Leece 《Veterinary anaesthesia and analgesia》2014,41(6):575-582
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol. 相似文献
8.
9.
10.
A comparison of cardiopulmonary function,recovery quality,and total dosages required for induction and total intravenous anesthesia with propofol versus a propofol‐ketamine combination in healthy Beagle dogs 下载免费PDF全文
ObjectiveTo compare cardiopulmonary function, recovery quality, and total dosages required for induction and 60 minutes of total intravenous anesthesia (TIVA) with propofol (P) or a 1:1 mg mL−1 combination of propofol and ketamine (KP).Study designRandomized crossover study.AnimalsTen female Beagles weighing 9.4 ± 1.8 kg.MethodsDogs were randomized for administration of P or KP in a 1:1 mg mL−1 ratio for induction and maintenance of TIVA. Baseline temperature, pulse, respiratory rate (fR), noninvasive mean blood pressure (MAP), and hemoglobin oxygen saturation (SpO2) were recorded. Dogs were intubated and spontaneously breathed room air. Heart rate (HR), fR, MAP, SpO2, end tidal carbon dioxide tension (Pe’CO2), temperature, and salivation score were recorded every 5 minutes. Arterial blood gas analysis was performed at 10, 30, and 60 minutes, and after recovery. At 60 minutes the infusion was discontinued and total drug administered, time to extubation, and recovery score were recorded. The other treatment was performed 1 week later.ResultsKP required significantly less propofol for induction (4.0 ± 1.0 mg kg−1 KP versus 5.3 ±1.1 mg kg−1 P, p = 0.0285) and maintenance (0.3 ± 0.1 mg kg−1 minute−1 KP versus 0.6 ±0.1 mg kg−1 minute−1 P, p = 0.0018). Significantly higher HR occurred with KP. Both P and KP caused significantly lower MAP compared to baseline. MAP was significantly higher with KP at several time points. P had minimal effects on respiratory variables, while KP resulted in significant respiratory depression. There were no significant differences in salivation scores, time to extubation, or recovery scores.Conclusions and clinical relevanceTotal intravenous anesthesia in healthy dogs with ketamine and propofol in a 1:1 mg mL−1 combination resulted in significant propofol dose reduction, higher HR, improved MAP, no difference in recovery quality, but more significant respiratory depression compared to propofol alone. 相似文献
11.
Carrie A. Davis Reza Seddighi Sherry K. Cox Xiaocun Sun Christine M. Egger Thomas J. Doherty 《Veterinary anaesthesia and analgesia》2017,44(4):727-737
Objective
To determine the effect of fentanyl on the induction dose of propofol and minimum infusion rate required to prevent movement in response to noxious stimulation (MIRNM) in dogs.Study design
Crossover experimental design.Animals
Six healthy, adult intact male Beagle dogs, mean ± standard deviation 12.6 ± 0.4 kg.Methods
Dogs were administered 0.9% saline (treatment P), fentanyl (5 μg kg?1) (treatment PLDF) or fentanyl (10 μg kg?1) (treatment PHDF) intravenously over 5 minutes. Five minutes later, anesthesia was induced with propofol (2 mg kg?1, followed by 1 mg kg?1 every 15 seconds to achieve intubation) and maintained for 90 minutes by constant rate infusions (CRIs) of propofol alone or with fentanyl: P, propofol (0.5 mg kg?1 minute?1); PLDF, propofol (0.35 mg kg?1 minute?1) and fentanyl (0.1 μg kg?1 minute?1); PHDF, propofol (0.3 mg kg?1 minute?1) and fentanyl (0.2 μg kg?1 minute?1). Propofol CRI was increased or decreased based on the response to stimulation (50 V, 50 Hz, 10 mA), with 20 minutes between adjustments. Data were analyzed using a mixed-model anova and presented as mean ± standard error.Results
ropofol induction doses were 6.16 ± 0.31, 3.67 ± 0.21 and 3.33 ± 0.42 mg kg?1 for P, PLDF and PHDF, respectively. Doses for PLDF and PHDF were significantly decreased from P (p < 0.05) but not different between treatments. Propofol MIRNM was 0.60 ± 0.04, 0.29 ± 0.02 and 0.22 ± 0.02 mg kg?1 minute?1 for P, PLDF and PHDF, respectively. MIRNM in PLDF and PHDF was significantly decreased from P. MIRNM in PLDF and PHDF were not different, but their respective percent decreases of 51 ± 3 and 63 ± 2% differed (p = 0.035).Conclusions and clinical relevance
Fentanyl, at the doses studied, caused statistically significant and clinically important decreases in the propofol induction dose and MIRNM. 相似文献12.
Mannarino R Luna SP Monteiro ER Beier SL Castro VB 《Veterinary anaesthesia and analgesia》2012,39(2):160-173
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol. 相似文献
13.
14.
OBJECTIVE: To compare propofol, thiopental and ketamine as induction agents before halothane anaesthesia in goats. STUDY DESIGN: Prospective, randomized cross-over study. Animals Seven healthy adult female goats with mean (+/-SD; range) body mass of 38.9 +/- 3.29 kg; 35-45 kg. METHODS: The seven animals were used on 21 occasions. Each received all three anaesthetics in a randomized cross-over design, with an interval of at least 2 weeks before re-use. Anaesthesia was induced with intravenous (IV) propofol (3 mg kg(-1)), thiopental (8 mg kg(-1), IV) or ketamine (10 mg kg(-1), IV). Following tracheal intubation, anaesthesia was maintained with halothane for 30 minutes. Indirect blood pressure, heart rate, respiratory rate and arterial blood gases were monitored. The quality of induction and recovery, recovery times and incidence of side-effects were recorded. RESULTS: Induction of anaesthesia was smooth and uneventful, and tracheal intubation was easily performed in all but two goats receiving ketamine. Changes in cardiopulmonary variables and acid-base status were similar with all three induction agents and were within clinically acceptable limits. Mean recovery times (time to recovery of swallowing reflex and to standing) were significantly shorter, and side-effects, e.g. apnoea, regurgitation, hypersalivation and tympany, were less common in goats receiving propofol, compared with the other treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol 3 mg kg(-1) IV is superior to thiopental and ketamine as an induction agent before halothane anaesthesia in goats. It provides uneventful recovery which is more rapid than thiopental or ketamine, so reduces anaesthetic risk. 相似文献
15.
《Veterinary anaesthesia and analgesia》2022,49(3):243-250
ObjectiveTo determine an optimum infusion rate of propofol that permitted rapid tracheal intubation while minimizing the duration of postinduction apnoea.Study designProspective, randomized, blinded clinical trial.AnimalsA total of 60 client-owned dogs presented for elective neutering and radiography.MethodsDogs were randomly allocated to one of five groups (groups A–E) to have propofol at an infusion rate of 0.5, 1, 2, 3, or 4 mg kg–1 minute–1, respectively, following intramuscular premedication with methadone 0.5 mg kg–1 and dexmedetomidine 5 μg kg–1. Propofol administration was stopped when adequate conditions for tracheal intubation were identified. Time to tracheal intubation and duration of apnoea were recorded. If oxygen haemoglobin saturation decreased to < 90%, manual ventilation was initiated. A one-way analysis of covariance was conducted to compare the effect of propofol infusion rate on duration of apnoea and intubation time whilst controlling for covariates, followed by post hoc tests. The significance level was set at p < 0.05.ResultsPropofol infusion rate had a significant effect on duration of apnoea (p = 0.004) and intubation time (p < 0.001) after controlling for bodyweight and sedation scores, respectively. The adjusted means (± standard error) of duration of apnoea were significantly shorter in groups A and B (49 ± 39 and 67 ± 37 seconds, respectively) than in groups C, D and E (207 ± 34, 192 ± 36 and 196 ± 34 seconds, respectively). Group B (115 ± 10 seconds) had a significantly shorter intubation time than group A (201 ± 10 seconds, p < 0.001).Conclusions and clinical relevanceAn infusion rate of 1.0 mg kg–1 minute–1 (group B) appears to offer the optimal compromise between speed of induction and duration of postinduction apnoea. 相似文献
16.
Lin GY Robben JH Murrell JC Aspegrén J McKusick BC Hellebrekers LJ 《Veterinary anaesthesia and analgesia》2008,35(2):141-153
OBJECTIVE: To evaluate cardiovascular and respiratory effects and pharmacokinetics of a 24-hour intravenous constant rate infusion (CRI) of dexmedetomidine (DMED) during and after propofol (PRO) or isoflurane (ISO) anaesthesia in dogs. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Ten healthy adult Beagles. METHODS: Instrumented dogs received a DMED-loading bolus (25 microg m(-2)) at time 0 followed by a 24-hour CRI (25 microg m(-2) hour(-1)), with PRO or ISO induction/maintenance of anaesthesia during the first 2 hours (PRO and ISO treatment groups, respectively). Cardiovascular, respiratory, blood gas, airway gas, serum chemistry variables and DMED plasma concentration data were collected at -15, 5, 15, 30, 45, 60, 90 and 120 minutes. A number of cardiorespiratory and tissue oxygenation variables were calculated from the above data. After the 2-hours of anaesthesia, heart and respiratory rates and electrocardiograms were recorded and DMED plasma concentrations were determined for up to 26 hours. RESULTS: Vasopressor effects and the decrease in heart rate (HR) and cardiac index induced by DMED were greater for PRO than ISO, but were within clinically acceptable ranges. Adequate oxygenation was maintained above the critical O(2) delivery level. The overall incidence of unfavourable arrhythmias was low and tended to vary inversely with HR. Mean DMED plasma concentration ranged from 0.23 to 0.47 ng mL(-1) for both groups during the 24-hour CRI with a mean elimination half-life of approximately 0.46 hour. CONCLUSION AND/CLINICAL RELEVANCE: DMED CRI resulted in typical alpha(2)-agonist induced haemodynamic changes with minimal respiratory effects, and appeared to be an efficacious adjunct during and after PRO or ISO anaesthesia in healthy dogs. 相似文献
17.
Frias AF Mársico F Gómez de Segura IA Nascimento PR Nascimento A Soares JH Almosny NR 《Veterinary anaesthesia and analgesia》2003,30(4):193-201
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol. 相似文献
18.
ObjectiveTo explore, in rabbits, the minimum infusion rates (MIR) required and recovery time from long duration (≤8 hours) continuous infusion of fospropofol disodium, a novel water-soluble prodrug of propofol, and compare it with propofol.Study designProspective, randomized, blinded experimental trial.AnimalsNinety-six adult laboratory rabbits, mean ± SD weight 2.20 ± 0.15 kg.MethodsStage 1. 16 rabbits were assigned to receive fospropofol disodium or propofol to measure MIR, using an up-and-down method with response to tail-clamping stimulus (TCS). Stage 2. Eighty rabbits were allocated to group F (fospropofol disodium) or group P (propofol), and further subdivided (n = 10 in each subgroup) according to infusion time (2, 4, 6 or 8 hours), to groups F2h, F4h, F6h, F8h and P2h, P4h, P6h, P8h. Fospropofol or propofol were infused, and tail clamping applied to maintain the same depth of anaesthesia until infusion was completed. Times to recover righting reflex (RR), to respond to TCS, and total recovery to different durations of continuous infusion of two anaesthetic drugs were noted. Respiratory and pulse rates and oxygen saturation were analyzed. The plasma concentrations of fospropofol disodium, the active metabolite propofol (propofolF) and propofol emulsion were measured with respect to loss and recovery of RR and TCS.ResultsMIR of fospropofol disodium was 2.0 mg kg?1 minute?1, and MIR of propofol was 0.9 mg kg?1 minute?1. Times in minutes to total recovery from anaesthesia in groups F and P were as follows, F2h 15 ± 3; F4h 26 ± 4; F6h 52 ± 6; F8h 84 ± 10; and P2h 10 ± 1; P4h 19 ± 7; P6h 36 ± 7; P8h 48 ± 5.Conclusions and clinical relevanceAfter continuous intravenous infusion in rabbits (≤8 hours), fospropofol disodium and propofol both show an extension of recovery time with increasing infusion time, fospropofol disodium showing a significantly greater prolongation compared to propofol emulsion when infusion time increases to 6 and 8 hours. 相似文献
19.
Ana Zapata Francisco G. Laredo Mayte Escobar Amalia Agut Marta Soler Eliseo Belda 《Veterinary anaesthesia and analgesia》2018,45(5):609-617
Objective
To study the effect of alternating the order of midazolam and alfaxalone administration on the incidence of behavioural changes, alfaxalone induction dose and some cardiorespiratory variables in healthy dogs.Study design
Prospective, randomized, controlled, clinical trial.Animals
A total of 33 client-owned dogs undergoing elective procedures.Methods
Following intramuscular acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) premedication, anaesthesia was induced intravenously (IV) with a co-induction of either midazolam (0.25 mg kg?1) prior to alfaxalone (0.5 mg kg?1; group MA), or alfaxalone followed by midazolam at identical doses (group AM). The control group (CA) was administered normal saline IV prior to alfaxalone administration. Additional alfaxalone (0.25 mg kg?1 increments) was administered as required in all groups until orotracheal intubation was possible. Changes in behaviour, quality of induction, ease of intubation and incidence of adverse events at induction were recorded. Heart rate (HR), respiratory rate (fR) and systolic arterial blood pressure (SAP) were measured before treatments (baseline values), 30 minutes after premedication and at 0, 2, 5 and 10 minutes postintubation.Results
The incidence of excitement was higher in group MA compared with groups CA (p = 0.005) and AM (p = 0.013). The mean induction dose of alfaxalone was lower in group AM compared with group CA (p = 0.003). Quality of induction and ease of intubation were similar among groups. Mean HR values decreased after premedication and increased after alfaxalone administration in all groups. Mean SAP values were similar between groups. The number of animals that required manual ventilation was higher in the MA group.Conclusions and clinical relevance
Despite a lower occurrence of adverse events at induction in group AM compared with group MA and a reduction of alfaxalone dose requirement in group AM compared with group CA, the use of an alfaxalone–midazolam co-induction does not seem to produce any cardiovascular or respiratory benefits in healthy dogs. 相似文献20.
Ribeiro LM Ferreira DA Brás S Gonzalo-Orden JM Antunes LM 《Veterinary anaesthesia and analgesia》2012,39(1):21-28
ObjectiveTo evaluate if the cerebral state index (CSI), measured by a Cerebral State Monitor (CSM), can predict depth of anaesthesia as assessed clinically or by estimated propofol plasma concentrations.Study designProspective clinical study.AnimalsFourteen mixed breed dogs, weighing 24.5 ± 4.7 kg, scheduled to undergo neutering procedures.MethodsDogs were premedicated with 0.05 mg kg?1 acepromazine intramuscularly. The CSM and cardiovascular monitoring equipment were attached. Anaesthesia was induced with propofol using a target controlled infusion (TCI) to varying plasma propofol targets (PropCp). Following endotracheal intubation the dogs were ventilated with oxygen. Anaesthetic maintenance was with propofol by TCI. A PropCp of 3 μg dL?1 was set initially, then PropCps were increased in 1 μg dL?1 steps to 7, 9 and then 11 μg dL?1. Each PropCp was held constant for a 5 minute period, at the end of which depth of anaesthesia was classified using a previously evaluated scale of ‘planes’ based on palpebral and corneal reflexes and eye position. Cerebral state index (CSI), burst suppression (BSR) and electromyogram were measured at these time points. The prediction probability (PK) of these variables, or of the PropCp in predicting depth of anaesthesia was calculated.ResultsThe PKs for predicting anaesthetic planes were 0.74, 0.91, 0.76 and 0.78 for CSI, BSR, EMG and PropCp, respectively. The PKs for PropCp to predict CSI, BSR and EMG were 0.65, 0.71 and 0.65 respectively.Conclusion and clinical relevance The Cerebral State Monitor was able to detect very deep planes of anaesthesia when BSR occurs, but was not able to distinguish between the intermediate anaesthetic planes likely to be used in clinical anaesthesia. 相似文献