首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study deals with the relationship between long toes in the hind feet and pain in the gluteal region in horses, and the remedial value of trimming/shoeing that moves the breakover point back at the toe. Seventy seven client-owned horses were studied, 67 shod riding horses retrospectively and 10 barefoot broodmares prospectively. The 10 mares were evaluated twice, and 24 of the 67 riding horses were re-evaluated at the next shoeing, for a total of 111 observations. Each horse underwent gluteal palpation and lateral radiographs of both hind feet. Toe length was quantified as breakover distance (BD), the horizontal distance between the tip of the third phalanx and the dorsalmost point at which the wall/shoe was in contact with the ground. The BD was then shortened with trimming +/− shoeing to a length of ≤15mm (shod horses) or ≤20 mm (barefoot horses). The 24 riding horses were re-evaluated 4-6 weeks later and the 10 broodmares 1 week after trimming.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Overload injuries in sport horses commonly occur; shoeing techniques are believed to be important in prevention of these injuries, but there is a paucity of scientific information identifying the potential connection. OBJECTIVES: To test a horseshoe with a modified rolled toe designed to ease the process of breakover and decrease loading of lesion-prone structures of the distal limb. METHODS: Twenty clinically sound Warmblood horses trotted over a track containing a pressure/force measuring system and 6 infrared cameras. The horses were measured with 2 types of shoes, standard flat shoes and shoes with a rolled toe. The shoeing procedure was randomised and horses had 2 days between measurements to adapt to the shoes. RESULTS: Limb placement and timing characteristics, e.g. breakover duration, did not change significantly. There was an improvement in the ease of movement to roll over the toe in the shoes with a rolled toe, due mainly to a smoother hoof-unrollment pattern. The peak indicative moment decreased substantially at the onset of breakover in the shoe with the rolled toe. CONCLUSIONS: With a rolled toe the process of hoof-unrollment is smoother, which improves the coordination of this process, and lowers peak loading of the distal limb during breakover. POTENTIAL RELEVANCE: This study stresses the importance of proper shoeing in sound horses, showing that shoe modifications can optimise the loading characteristics of the distal limb and therefore might be a means to prevent sport horses from overload injuries.  相似文献   

3.
In a controlled experimental study, eight sound horses were shod with a plain steel shoe on one forelimb (control limb) and with four different shoe types on the other forelimb (treated limb). The four shoe types used on the treated limb were a plain steel shoe, a rocker-toe shoe, a rolled-toe shoe, and a square-toe shoe. The selection of the treatment limb (left or right) was randomized between the horses and a replicated Latin square design was used to determine the order of application of the shoes to the treatment limb. High speed cinematography (200 frames/s) was used to film the horses trotting in hand on a concrete surface. Eight strides were analyzed for each shoeing treatment. The breakover times of both forelimbs were measured, and the breakover ratio was computed as the ratio between the breakover time of the treated limb to the breakover time of the control limb. The results of an analysis of variance, using a probability of 0.05 alpha, showed that the breakover ratio did not differ significantly between the four types of shoes (p=0.10). It is concluded that, in sound horses trotting at a slow speed on a hard surface, the application of a rocker-toe shoe, a rolled-toe shoe or a square- toe shoe did not shorten forelimb breakover duration significantly compared with a plain steel shoe.  相似文献   

4.
OBJECTIVE: To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover). Animals-10 adult horses. PROCEDURE: A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim-no shoe) and after 2 treatments by a farrier (treatment 2, trim-standard shoe; and treatment 3, trim-contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits. RESULTS: Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2 degrees and 2.5 degrees during the first half of breakover when trotting, compared with values for no trim-no shoe and trim-standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe. CONCLUSIONS AND CLINICAL RELEVANCE: A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover.  相似文献   

5.
OBJECTIVE: To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval. ANIMALS: 18 clinically sound Warmblood horses. PROCEDURES: Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes. Results-Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase. CONCLUSIONS AND CLINICAL RELEVANCE: Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.  相似文献   

6.
AIM: To quantify the effect of plain, wedged and eggbar shoes on the distribution of pressure under the hoof of horses at the walk, at selected areas of interest (AOI), to find scientific evidence for the perceived efficacy of these shoes in the treatment of palmar heel pain. METHODS: Six clinically sound adult Warmblood mares weighing 551 (SD 25) kg were shod (forelegs) with either plain, eggbar or 6 degrees-wedge shoes using a latin-square experimental design. All horses were shod by the same farrier, and each balanced and aligned for its individual conformation. Data were collected on three walking strides for each foreleg using a 550 x 405-mm pressure plate to quantify the distribution of pressure under each type of shoe at five AOI. RESULTS: Landing of the hoof with all three shoes was predominantly from lateral to medial (range 7-15 msec). Irrespective of the type of shoe, the greatest pressure was found in the lateral and medial toe (lateral 39.7 (SE 0.6) N/cm2 and medial 35.0 (SE 0.5) N/cm2) and the point of the toe (33.3 (SE 0.5) N/cm2). The lowest peak pressure was in the heel (lateral 25.9 (SE 0.5) N/cm2 and medial 21.1 (SE 0.4) N/cm2; p<0.05). Eggbar and wedge shoes increased total stance time (938 (SE 8) msec and 952 (SE 6) msec, respectively) compared with plain shoes (898 (SE 14) msec) (p<0.05). The wedge shoe reduced breakover compared with the plain and eggbar shoes (13.8% vs 15.8% and 14.5%, respectively; p<0.05). The eggbar shoe had lower total shoe peak pressure (29.5 (SE 0.7) N/cm2) than plain (31.8 (SE 0.5) N/cm2) and wedge (30.9 (SE 0.6) N/cm2) shoes. CONCLUSIONS AND CLINICAL RELEVANCE: Both the eggbar and 6 degrees-wedge shoe offer advantages for palmar heel pain. In comparison to the plain shoe, the eggbar shoe had less peak pressure at the heel AOI, and across the entire shoe, due to the greater bearing surface and the effect of the longer heel. The 6 degrees-wedge shoe had greater loading on the lateral heel AOI, but promoted earlier breakover at the toe. Both shoes offer advantages for the horse with palmar heel pain, though choice of shoe will depend on clear identification of the causative factors, to provide therapeutic shoeing that maximises the individual horse's response.  相似文献   

7.
The objective of this study was to use a pressure plate to quantify the toe-heel load redistribution in the forelimbs of sound warmblood horses with normal shoes and shoes with a wide toe and narrow branches, used empirically in the treatment of superficial digital flexor tendon or suspensory ligament injuries. In a crossover-design study, six horses, randomly shod with normal shoes and shoes with a wide toe, were led over a dynamically calibrated pressure plate to record data from both forelimbs. There were no significant differences between both shoes in the toe-heel index of stance time, peak vertical force and vertical impulse. For the adapted shoe, the peak vertical pressure was slightly lower and was exerted slightly earlier in the stance phase, albeit not significantly. However, the significantly larger toe contact area of the adapted shoe resulted in a significantly lower total vertical pressure in the toe region. Hence, the pressure plate adequately visualised the individual loading of the toe and heel region, and clearly demonstrated the altered pressure distribution underneath the shoe with a wide toe. Although further research on a deformable surface is needed to confirm this hypothesis, the pressure redistribution from the toe to the heels could promote sinking of the heels in arena footing, thereby mimicking the biomechanical effects of a toe wedge and providing a rationale for its application in the treatment of SDFT or SL injuries. The pressure measuring equipment used in this study can offer to the clinician a diagnostic tool for the evaluation of the load distribution underneath the equine hoof and for the fine-tuning of corrective shoeing.  相似文献   

8.
Point of breakover, defined as the portion of the hoof last in contact with the ground during the terminal stance phase of a limb, can be influenced by many factors including craniocaudal placement of the shoe. Shortening the point of breakover has been suggested to decrease strain on the deep digital flexor tendon and navicular bone as well as to improve the alignment of the second and third phalanx. The current experiment involved eight sound horses fitted with aluminum plates adhered to their front hooves, which were drilled and tapped to allow additional aluminum plates of various lengths to be attached (the longest plate was placed flush with the toe, while the shortest plate was moved 3.81 cm caudal to the toe). Horses were recorded on video while at the walk and trot over a distance of 70 meters for six repetitions to determine differences in gait kinematics. Results of this study show significant changes in stride kinematics caused by shortening the point of breakover. Retraction of the forelimbs was greatest when breakover was moved 1.27 cm back from the toe (P < .05), and minimum height of the fetlock at the trot was higher on all treatments where the breakover point was moved caudally (P < .05). Some improvements in gait quality were observed when breakover was shortened, although extreme caudal placement of the shoe (negative placement in relation to P3) resulted in a decrease in gait quality as seen by decreased retraction of the forelimb (P < .05) coupled with hoof height occurring earlier in the stride (P < .05).  相似文献   

9.
REASONS FOR PERFORMING STUDY: Collapsed heels conformation has been implicated as causing radical biomechanical alterations, predisposing horses to navicular disease. However, the correlation between hoof conformation and the forces exerted on the navicular bone has not been documented. HYPOTHESIS: The angle of the distal phalanx in relation to the ground is correlated to the degree of heel collapse and foot conformation is correlated to the compressive force exerted by the deep digital flexor tendon on the navicular bone. METHODS: Thirty-one shod Irish Draught-cross type horses in routine work and farriery care were trotted over a forceplate, with 3-dimensional (3D) motion analysis system. A lateromedial radiograph of the right fore foot was obtained for each horse, and various measurements taken. Correlation coefficients were determined between hoof conformation measurements and between each of these and the force parameters at the beginning (15%) of stance phase, the middle of stance (50%) and at the beginning of breakover (86% of stance phase). Significance was defined as P<0.05. RESULTS: The force exerted on the navicular bone was negatively correlated (P<0.05) to the angle of the distal phalanx to the ground and to the ratio between heel and toe height. This was attributed to a smaller extending moment at the distal interphalangeal joint. There was not a significant correlation between the angle of the distal phalanx and the degree of heel collapse, and heel collapse was not significantly correlated to any of the force parameters. CONCLUSIONS: Hoof conformation has a marked correlation to the forces applied to the equine foot. Heel collapse, as defined by the change in heel angle in relation to toe angle, appears to be an inaccurate parameter. The forces applied on the foot are well correlated to the changes in the ratio of heel to toe heights and the angles of the distal phalanx. POTENTIAL RELEVANCE: Assessment of hoof conformation should be judged based on these parameters, as they may have clinical significance, whereas parallelism of the heel and toe is of less importance.  相似文献   

10.
A 12-year-old Quarterhorse stallion was presented with a severe lameness in the left forefoot. There was a 3 cm diameter cavity in the sole that extended to the solar surface of the distal phalanx. Radiographs revealed an osteomyelitis and a sequestrum which probably developed following the prolonged topical application of 10 percent formalin. The sequestrum was removed and the infected bone curetted under general anaesthesia. The horse was shod with heart bar shoes on both front feet 7 days after the surgery. Eight months later, radiographs showed marked rotation of the distal phalanx despite continual shoeing with heart bar shoes. Surgical resection of the dorsal wall of the hoof at the toe removed the pressure applied by the laminar wedge, and combined with the stabilising and supporting action of the heart bar shoe, permitted realignment of the distal phalanx approximately 30 degrees closer to the normal skeletal axis by 26 days post-operatively. This case highlights some of the recent developments in the treatment of laminitis and suggests that effective treatment is possible if the value of the animal warrants the time and investment.  相似文献   

11.
REASONS FOR PERFORMING STUDY: There is a need to determine accelerations acting on the equine hoof under field conditions in order to better assess the risks for orthopaedic health associated with shoeing practices and/or surface conditions. OBJECTIVES: To measure the acceleration profiles generated in Thoroughbred racehorses exercising at high speeds over dirt racetracks and specifically to evaluate the effect of a toe grab shoe compared to a flat racing plate, using a newly developed wireless data acquisition system (WDAS). METHODS: Four Thoroughbred racehorses in training and racing were used. Based on previous trials, each horse served as its own control for speed trials, with shoe type as variable. Horses were evaluated at speeds ranging from 12.0-17.3 m/sec. Impact accelerations, acceleration on break over and take-off, and temporal stride parameters were calculated. Impact injury scores were also determined, using peak accelerations and the time over which they occurred. RESULTS: Recorded accelerations for the resultant vector (all horses all speeds) calculated from triaxial accelerometers ranged 96.3-251.1 g, depending on the phase of the impact event. An association was observed between shoe type and change in acceleration in individual horses, with 2 horses having increased g on initial impact with toe grab shoes in place. In the final impact phase, one horse had an increase of 110 g while wearing toe grab shoes. Increased accelerations were also observed on break over in 2 horses while wearing toe grab shoes. CONCLUSIONS: Shoe type may change impact accelerations significantly in an individual horse and could represent increased risk for injury. Further work is needed to determine if trends exist across a population. POTENTIAL RELEVANCE: The WDAS could be used for performance evaluation in individual horses to evaluate any component of the horse-performance surface interface, with the goal of minimising risk and optimising performance.  相似文献   

12.
There is a lack of research on the benefits and risks of shoeing conditions in harness racing. Thus, our objectives were to: (a) investigate whether velocity times (VT; s/km) are affected by racing unshod (N = 76,932 records on 5,247 horses); (b) determine the potential risks of galloping, being penalized, and disqualification when competing unshod (N = 111,755 records on 6,423 horses); and (c) identify additional environmental factors that affect VT and risks. VT was found to be significantly influenced by shoeing condition (e.g., unshod, shod front, shod hind, or fully shod), but also by sex, age, season, track, track condition, start method, start position, distance, and driver‐horse performance level (p < 2e‐16). The risks of galloping and disqualification were significantly influenced by shoeing condition, sex, age, season, track, start method, start position, or driver‐horse performance level (p ≤ .05). Horses racing unshod had 0.7 s/km lower VT than fully shod horses and showed better performance when racing on neutral tracks during the late summer than horses with other shoeing conditions during the same period. However, racing unshod increased the relative risks of galloping and disqualification by 15%–35% in all seasons. Horses shod only on the hind hooves showed better performance than fully shod horses, without higher risks associated with competing unshod.  相似文献   

13.
The gait characteristics of a horse with chronic sesamoiditis of the left forelimb are described. On physical examination the affected metacarpophalangeal joint was foundto be enlarged. Extensive fibrosis on the palmar surface of the proximal sesamoid bones and in the suspensory ligament resulted in a reduced range of movement in the joint At rest the horsepointed the left toe and was reluctant to bear weight on that limb. Observation at the trot revealed an obvious head nod on the sound right diagonal. During the left diagonal stance phasethe head and neck were raised, the LF fetlock was held in a rigid upright position, and hyperextension of the joint was restricted.

Cinematographic analysis showed that the LF had a longer stance phase than the RF, due to anincreased anterior phase combined with a slower breakover (p<0.01). At the end of its stance phase the LF overlapped with both the RF and LH, so there was no left suspension. The rightdiagonal stance phase was followed by a short suspension before impact of the LF. With regard to linear measurements the horse took a longer step from the RF to LF and from the RH to LHthan for the contralateral pairs (p<0.01). As a result the distance between the RF and LH inthe right diagonal stance phase was significantly less than that between the LF and RH in the left diagonal stance phase (p<0.01).

Kinematic analysis showed that the sound RF made flat foot impact with the ground, whereas, at the end of the swing phase, the LF toe flipped up and impact was heel first The neck was elevated during the early part of the LF stance phase, until the limb had passed the midstance position when the poll fell, reaching its lowest level at the RF midstance position. Author's address: Department of Veterinary Anatomy, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan.  相似文献   


14.
Orthopaedic shoeing applied for disorders such as navicular disease is mostly evaluated on hard track surfaces, but very often horses are ridden only on soft tracks. To compare the effects of normal shoes, eggbar shoes, and shoes with heel wedges (5 degrees) on the kinematics of the distal forelimb on hard and soft track surfaces, eleven sound Dutch Warmblood horses were led across three different tracks (an asphalt, a fibre/sand mix (= Agterberg), and a pure sand track) with three different shoe types (a normal shoe, an eggbar shoe, and a shoe with heel wedges). The hoof rotation and the maximal extension of the fetlock joint at midstance period were recorded by an infrared-light based gait analysis system (ProReflex) at walk and at trot. Statistical analysis revealed significant effects of track and shoe type, and a shoe-track interaction (p<0.05). On soft track surfaces, the equilibrium of the distal forelimb dictated a 1.5-4 degrees forward rotation of the normal or eggbar shod foot, the most on a sand track. The wedge effect on hoof rotation, however, was always significantly greater, but similar to that on the hard track surface (5 degrees forward rotation). The maximal fetlock extension was less on a soft surface, in particular on the sand track (p<0.05). This decrease was most pronounced when the horses were shod with heel wedges and was least pronounced with normal shoes. In conclusion, in particular the sand track allows a forward rotation of the hoof and thus relief of pressure in the navicular area, and a decrease in maximal fetlock extension and thus unloading of the fetlock joint. The extra forward rotation of the hoof induced by heel wedges on hard tracks was almost the same on soft track surfaces. Eggbars and fibre/sand mix tracks have intermediate effects on unloading of the distal forelimb.  相似文献   

15.
The shoe types most commonly applied to horses with navicular disease or other forms of palmar heel pain are shoes with heel wedges and eggbar shoes, although their efficacy has been a matter of debate among veterinarians and farriers for centuries. To quantify the effect of these different types of “navicular” shoeing on static hoof pressure distribution, 6 warmblood horses were shod with 6° wedge, eggbar, and plain shoes. While standing square with weight evenly distributed across both forelimbs, the center of pressure and pressures at selected areas of interest (AOI: toe, medial and lateral toe, medial and lateral heel) were measured using a Footscan (RsScan International, Belgium) pressure plate in a Latin square design using the plain shoe as a reference.Wedge shoes did not provide a significant shift in the center of pressure. The application of eggbar shoes did not alter the relative position of the center of pressure under the hoof. However, the absolute distance from the toe to the center of pressure was significantly larger with eggbar shoes (77 + 12 mm) compared with plain and wedged shoes (70 ± 8 mm, P < .05) resulting in an absolute, caudal shift of the center of pressure. When pressure (N/cm2) values at the five AOIs were averaged for each shoe type, the wedge and eggbar shoe recordings showed a significantly lower mean pressure than plain shoes (P < .05).In conclusion, mean AOI pressures decreased with wedge and eggbar shoes, and eggbar shoes provided a caudal shift in the center of pressure. These effects are believed to decrease the moment of the coffin joint and reduce the pressure on the navicular bone. Thus, the findings of this study might contribute to the scientific evidence of efficacy of the use of wedge and eggbar shoes in “navicular” lame horses.  相似文献   

16.
Heel contraction is an undesired but common condition in domestic horses. Some authors indicate shoeing as a risk factor. There is a correlation between shoeing and a restriction of heel expansion, but the clinical significance is unknown. This study aimed to evaluate the influence of shoeing and other risk factors, such as age, access to paddock, and breed, on heel contraction. This study included 114 horses, 55 of which were barefoot their whole life and 59 had been shod consistently for at least the previous year. The width and length of the frog were measured. Linear mixed-effects models were performed for the width:length ratio, where the fixed effects were age, sex, breed, pasture or paddock time, shoeing and its duration, and limb. The random effects included the horse and the yard. Although heel contraction occurs more often in shod horses compared with barefoot horses, the difference between the two conditions was not statistically significant, when other factors were considered. The most important factors that impacted contraction were individual horse features and breed (P < .001). The effect of age and a yard was noticed (P < 0,5). The sex, paddock time, and the shoeing and its duration were found not to have statistical significance. The study concluded that heel contraction is multifactorial problem, mainly caused by breed and unknown features correlated with individual. It was not confirmed that horseshoeing causes heel contraction. Because of significant difference in incidence of contraction between yards, there is a need to further investigation of environmental factors causing this hoof distortion.  相似文献   

17.
Navicular disease was diagnosed in 36 horses. Each horse was treated, using shoeing as the only major means of treatment. Phenylbutazone was used initially for 10 days after shoeing. Shoeing was designed to correct preexisting problems, enhance physiologic function of the foot, and ease breakover of the foot. The horses were evaluated over a period ranging from 12 to 54 months. The lameness improved in all horses. Thirty-one of the 36 horses treated were not lame when last evaluated. Shoeing was most effective when performed within 8 months of the first signs of lameness. Also, horses used for show ring performance classes had a better response to treatment than did horses used for gaming or jumping.  相似文献   

18.
OBJECTIVE: To develop an objective, accurate method for quantifying forelimb ground reaction forces in horses by adapting a human in-shoe pressure measurement system and determine the reliability of the system for shod and unshod horses. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were instrumented with a human in-shoe pressure measurement system and evaluated at a trot (3 m/s) on a motorized treadmill. Maximum force, stance time, and peak contact area were evaluated for shod and unshod horses. Three trials were performed for shod and unshod horses, and differences in the measured values were examined with a mixed model ANOVA for repeated measures. Sensor accuracy was evaluated by correlating measured variables to clinically observed lameness and by a variance component analysis. RESULTS: 4 of 6 horses were determined to be lame in a forelimb on the basis of clinical examination and measured values from the system. No significant differences were observed between shod and unshod horses for maximum force and stance time. A significant decrease in peak contact area was observed for shod and unshod horses at each successive trial. Maximum force measurements provided the highest correlation for detecting lameness (r = 0.91, shod horses; r = 1.0, unshod horses). A variance component analysis revealed that 3 trials provided a variance of 35.35 kg for maximum force (+/- 5.78% accuracy), 0.007 seconds for stance time (+/- 2.5% accuracy), and 8.58 cm2 for peak contact area (+/- 11.95% accuracy). CONCLUSIONS AND CLINICAL RELEVANCE: The in-shoe pressure measurement system provides an accurate, objective, and effective method to evaluate lameness in horses.  相似文献   

19.
Every equine hoof has a certain amount of distortion. This presents in various forms: flares, dished toes, under-run heels, and cracks. Several farrier texts anecdotally suggest a correlation between hoof capsule distortion and lameness. The goal of this study was to evaluate the effects of the Sigafoos Series I glue-on shoe on hoof capsule distortion, and specifically, the effect on dorsal wall deviation. Measurements of the hoof were made using the Metron hoof evaluating system by Eponatech. Comparisons were made of the following values: dorsal length, hoof angle, dorsal wall deviation, hairline angle, hairline deviation, heel/toe height, heel height, heel angle, and support length. The study group consisted of front feet of horses shod exclusively in the Sigafoos glue-on shoe for a period of 1 year, and the control group consisted of 133 front feet from horses using nailed on shoes for a similar period and with a musculoskeletal complaint. The results indicate a 48% reduction in dorsal wall deviation for the study group. This finding supports the use of this glue-on shoe as beneficial with the goal to reduce capsular distortion of the dorsal wall.  相似文献   

20.
Instrumented shoes were used to measure the vertical forces exerted by horses moving at a variety of gaits. Two types of shoes were used; one contained a single transducer positioned over the center of the frog and the second contained transducers located at the toe and both sides of the heel. Horses were shod with these instrumented shoes and walked and trotted over a force plate. Forces were simultaneously recorded from the transducers in the shoes and from the force plate. Comparisons were made between the amount and duration of the forces exerted on the transducers and the vertical and horizontal forces recorded from the force plate. Forces recorded from the single transducer shoes showed strong correlations with the forces recorded from the force plate for horses moving at the walk; however, at the trot only moderate correlations occurred between these forces. At both the walk and trot, forces recorded from each side of the heel and the total forces occurring on all three transducers from the front hooves of horses shod with three transducer shoes showed strong correlations to the vertical forces recorded from the force plate.Vertical forces were also recorded from the instrumented shoes as horses walked, trotted and galloped on a track straightaway. Forces recorded from normal horses shod with single transducer shoes on all four feet were greater on the forelimbs than the rear limbs at the walk and trot. At the gallop, forces were highest on the lead front followed by the nonlead front, lead rear and nonlead rearlimb, respectively. Forces recorded from a three transducer shoe on the right front hoof of a horse walking, trotting and galloping in a right lead were highest on the medial side of the heel and occurred during the middle of the support period. Peak forces on the toe occurred at or near the time of heel lift.The results of these studies indicate that these instrumented shoes have advantages over the methods previously used to measure locomotor forces. These instrumented shoes can be used to simultaneously record the temporal components and the amount and distribution of vertical forces exerted during consecutive strides of horses moving at a variety of gaits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号