首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loss of aldicarb sulphoxide was studied in incubation experiments with soil from four plough layers and two deeper layers. The loss during the 111 days of the experiment could be described by first-order kinetics. The half-lives at 15°C ranged from 20 days in a clay loam to 46 days in a peaty sand. The loss of sulphoxide in deeper layers was considerably slower than in the corresponding top layers of a soil profile. In soil from a silty layer at 70–90 cm depth the half-life was about 53 days. In soil from a sand layer at 90–110 cm depth a loss of only about 15% was measured after 111 days of incubation. First-order rate constants for sulphoxide conversion in a clay loam at 6, 15 and 25°C were found to be 0.009, 0.033, and 0.05 day?1 respectively; in a greenhouse soil these rate constants were 0.0052, 0.019 and 0.04 day?1 respectively. The fractions of aldicarb sulphoxide that were oxidised to sulphone at 15°C in soil from plough layers were computed to range from 0.52 to 0.76.  相似文献   

2.
ROUCHAUD  NEUS  CALLENS  & BULCKE 《Weed Research》1998,38(5):361-371
Sulcotrione soil persistence in spring maize ( Zea mays L.) crops grown on a sandy loam soil was greater at pH 5·5 and 6·0 (soil half-life T 1/2≈58 days) than at pH 7·1 ( T 1/2 = 44 days). Sulcotrione was also applied as recommended on a summer maize crop at the five- to six-leaf growth stage, grown on a sandy loam soil. Sulcotrione soil half-life was 44 days, and the herbicide remained mainly in the 0- to 5-cm surface soil layer during the cropping period, in spite of the high water solubility and the heavy rains at the end of August; lower sulcotrione concentrations (10–18% of the total during the 2-month period after sulcotrione application) were detected in the 5- to 10-cm surface soil layer. The herbicide was applied pre-emergence to winter wheat ( Triticum aestivum L.) at four sites that differed in their soil texture and composition: loamy sand, sandy loam, loam and clay loam. Persistence was greater in the soils containing more organic matter. In soils having similar organic matter contents, persistence was lower in the soil containing more sand relative to loam and clay. During the winter crops, sulcotrione moved down to the 10- to 15-cm soil layer, in spite of the fact that the rains were lower in winter than in summer. Sulcotrione most generally was not detected in the 15–20 cm soil layer of the maize and winter wheat crops.  相似文献   

3.
Aldicarb was incubated in seven soils at 15°C and its loss was well described by first-order kinetics. Rate constants varied between 0.078 day?1 in a peaty sand to 0.35 day?1 in a clay loam. The concentration-time relationships for aldicarb, its sulphoxide and its sulphone were approximated by a computation model which was used to analyse the importance of the various consecutive and simultaneous reactions. It was computed that 91 to 100% of the aldicarb would be oxidised to its sulphoxide.  相似文献   

4.
The rates of degradation and downward movement of ethoprophos (O-ethyl SS-dipropyl phosphorodithioate) were measured under field conditions in four soils in aluminium columns (40 cm long). A 10% granular formulation was incorporated in the top 10 cm at a rate of 10.0–10.5 kg a.i./ha. Under outdoor conditions during spring and summer, loss of ethoprophos approximated to first order kinetics; the half-life was about 87 days in a humic sand and a peaty sand, with pH values of 4.5 and 4.6, respectively. In a sandy loam and a loam soil with pH values of 7.2 and 7.3, respectively, the half-life ranged between 14 and 28 days. Under experimental conditions with fallow soils and 35.3 cm rainfall, the downward movement of substantial concentrations of ethoprophos by leaching and diffusion was restricted to a few centimetres.  相似文献   

5.
Triazole fungicides are now widely used commercially and several are known to be persistent in soil. The degradation rates of five such fungicides were measured in laboratory tests with two soils over 720 days, with analysis of soil extracts by high-pressure liquid chromatography. Behaviour in a sandy loam and a clay loam were similar, and incubation of the compounds either singly or in admixture did not influence loss rates except for those of flutriafol which were lower in the latter. Triadimefon was quite rapidly reduced to triadimenol, though traces of the former were always found, indicating a possible redox equilibrium. Flutriafol, epoxiconazole and triadimenol (derived from triadimefon) were very persistent, breakdown following first-order kinetics with half-lives greater than two years at 10 °C and 80% field capacity. Propiconazole was moderately persistent, with a half-life of about 200 days under these conditions. Degradation rates increased about 3-fold as the temperature was increased from 5 to 18 °C, though decreasing soil moisture to 60% field capacity only slightly slowed degradation. The rate constants obtained are used in a companion paper describing field studies on these two soils to compare laboratory-measured degradation rates with losses in the field following commercial sprays. © 1999 Society of Chemical Industry  相似文献   

6.
Laboratory studies on the formation of bound residues and on the degradation of the triazole fungicide propiconazole were conducted in two different soils. Soils treated with 14C-propiconazole were incubated at 22 degrees C and extracted exhaustively with a solvent at each sampling date until no further propiconazole was extracted. The solvent-extractable residues were used to measure propiconazole remaining in the soil, and the extracted soils were used to investigate bound residues of propiconazole. Mineralization of propiconazole was investigated by measuring [14C]carbon dioxide evolved from the soil samples. Formation of bound residues of propiconazole was higher in silty clay loam soil than in sandy loam soil, giving approximately 38 and 23% of the applied 14C, respectively. In contrast, the rates of degradation and mineralization of propiconazole were lower in silty clay loam soil than in sandy loam soil. Decreased extractability of the 14C residues with incubation time was observed with increased formation of bound residues. When the propiconazole remaining in the solvent-extractable residues was quantitatively measured by high-pressure liquid chromatographic analysis, the half-life value in sandy loam soil was about 315 days, while the half-life in silty clay loam soil exceeded the duration of the 1 year experimental period. Increased formation of bound residues was observed as propiconazole degraded with incubation time, suggesting that degradation products are involved in the formation of bound residues. Our study suggests that the formation of bound residues of propiconazole contributes to the persistence of this fungicide in soil.  相似文献   

7.
The persistence of [14C]sethoxydim (2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexene-1-one) at the 2 μg g?1 level was studied under laboratory conditions in three soils at 20°C and 85% of their field capacity moistures. Following extraction of the soils with methanol, the herbicide remaining was determined using radiochemical techniques. Loss of radioactivity was more rapid on moist clay loam and sandy loam, where the half-lives were 12 days, than on heavy clay in which the half-life was 26 days. Loss of radioactivity from air-dried soils (15% of field capacity) was negligible with over 94% of the applied activity being recovered after 28 days. The persistence of sethoxydim at a rate of 1 kg ha?1 was investigated under field conditions using small plots at three prairie locations for 3 successive years. Using an oat-root bioassay procedure, no residues were detected in the 0–10 cm depths of any soils, any year, in September following May treatments.  相似文献   

8.
The effects of soil pH on rates of degradation of iprodione and vinclozolin were measured in a silty clay loam soil. Little degradation of either fungicide occurred at pH 4.3 or 5.0, and degradation at pH 5.7 was slower than at pH 6.5. In both of the higher-pH soils, the rate of loss of a second application of either fungicide was faster than that of the first, and a third application degraded even more quickly. In soil with pH 6.5, for example, the times for 50% degradation of iprodione following the first, second and third applications were about 30, 12 and 4 days, and for vinclozolin were 30, 22 and 7 days respectively. Iprodione degraded very rapidly in a sandy loam that had been treated three times previously with this fungicide and also degraded rapidly in the same soil pretreated three times with vinclozolin. Vinclozolin degraded rapidly in the vinclozolin pre-treated soil, but its rate of loss in the iprodione pre-treated soil was only slightly faster than in the previously untreated control. Studies of iprodione degradation in 33 soils from commercial fields demonstrated a clear trend towards faster rates of loss in soils with an extensive history of iprodione use. The time for 90% loss from previously untreated soils varied from 22 to 93 days. It varied from 16 to 28 days in soils treated once previously and from 5.2 to 23 days in soils treated twice previously. In soils that had received three or more previous doses, the time to 90% degradation varied from 3.8 to 15 days.  相似文献   

9.
Survival of Ralstonia solanacearum race 3 biovar 2 (phylotype II sequevar 1) in Egyptian soils and compost was studied under laboratory and field conditions. Survival of the pathogen under laboratory conditions varied with temperature, water potential and soil type, with temperature being the major determinant of survival of the pathogen. The effects of temperature and moisture content were variable between different experiments, but survival was generally longer at 15°C than at 4, 28 and 35°C respectively. Survival was also longer when moisture levels were constant compared with varying moisture levels at all temperatures. In experiments to compare the effects of progressive drying in sandy and clay soils there was a difference in survival times between the two soil types. In sandy soils, the pathogen died out more rapidly when soil was allowed to dry out than in controls where the soil was kept at constant water potential. In clay soils there was little difference between the two treatments, possibly due to the formation of a hard impermeable outer layer during the drying process, which retarded water loss from within. Survival in mature composts at 15°C was of the same order of magnitude as in soils but shorter at 28°C, possibly owing to increased biological activity at this temperature, or a resumption of the composting process, with concomitant higher temperatures within the compost itself. The maximum survival time recorded over all soil types and conditions during in vitro studies was around 200 days. In field studies, the maximum survival time in both bare sand and clay was around 85 days at depths up to 50 cm. The survival time was reduced in field experiments carried out in summer to less than 40 days and in one study when the ground was flooded for rice cultivation, the bacterium could not be detected 14 days after flooding. The maximum survival time of R. solanacearum in infected plant material or in infested soil samples incorporated into compost heaps was less than 2 weeks. At the culmination of field soil and compost experiments, no infection was detected in tomato seedlings up to 10 weeks after transplanting into the same soils or composts under glasshouse conditions at a temperature of 25°C.  相似文献   

10.
Summary. Adsorption and degradation rates of triasulfuron in 8 different soils were negatively correlated with soil pH and were generally lower in subsoils than in soils from the plough layer. The half-life at 20°C varied from 33 days in a top soil at pH 5·8 to 120 days in a subsoil at pH 7·4. Adsorption distribution coefficients in these two soils were 0·55 and 0·19, respectively. Movement and persistence of residues of chlorsulfuron, triasulfuron and metsulfuron-methyl were compared in a field experiment prepared in spring 1987. Triasulfuron was less mobile in the soil than the other two compounds. Residues of all three herbicides were largely confined to the upper 40–50 cm soil 148 days after application. With an initial dose of 32 g ha−1, residues in the surface soil layers were sufficient to affect growth of lettuce and sugar-beet sown approximately one year after application. Laboratory adsorption and degradation data were used with appropriate weather data in a computer model of herbicide transport in soil. The model gave good predictions of total soil residues during the first five months following application, and also predicted successfully the maximum depth of penetration of the herbicides into the soil during this period. However, more herbicide was retained close to the soil surface than was predicted by the model. The model predicted extensive movement of the herbicides in the soil during winter but did not predict that residues sufficient to affect crop growth could be present in the upper 15–20 cm soil after one year.  相似文献   

11.
The effects of soil temperature and soil moisture content on the rate of loss of N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine (I, AC 92,553) were measured under controlled conditions. The time for 50% disappearance in a sandy loam soil at 75% of field capacity was inversely related to temperature (98 days at 30°; 409 days at 10°). At 25°, the half-life increased with decreasing soil moisture content (122 days at 75% of field capacity; 563 days at 12.5%). In seven soils with different properties there was a trend towards a slower rate of loss as the organic matter content of the soils increased and the half-life varied from 72 to 172 days, first-order kinetics being obeyed. The herbicide was lost rapidly from an inert surface and 97% loss was recorded after 28 days at 25°. Losses from soil surfaces occurred more slowly and were greater from wet compared with dry soil. In the field, it was more persistent when incorporated than when applied to the soil surface. More than 60% of I incorporated in April 1975 could be detected the following September, but when applied to the soil surface, only about 20% of the applied dose remained by this time. Residues measured by gasliquid chromatography using a thermionic nitrogen detector closely paralleled those measured by a bioassay based on the root growth of buckwheat.  相似文献   

12.
The breakdown of oxamyl was studied in three downland chalk soils, a peat loam, a sandy loam, and the same sandy loam modified by adding peat. The kinetics of aldicarb degradation via its sulphoxide and aldoxycarb (aldicarb sulphone) were also studied in these two sandy loam soils. All the reactions followed first-order kinetics, the reaction being faster in the original than in the modified sandy loam. Rates of reaction were slower at low moisture contents, and decreased markedly when the temperature was reduced from 10 to 5°C though less so than from 15 to 10°C.  相似文献   

13.
Dissipation of atrazine after pre-emergence application to irrigated grain sorghum was investigated in an experiment on a Birganbigil clay loam at Yanco Agricultural Research Centre in the Murrumbidgee Irrigation Areas of New South Wales. Dissipation followed first-order kinetics with a half-life of 70 days. This rate of disappearance did not differ significantly between application rates of 2.5 and 10 kg/ha. Removal of volunteer plant growth with non-residual chemicals or by cultivation during the winter fallow periods had no significant effect on the levels of atrazine residues in the soil and dissipation rate did not differ significantly between the 2 years of the experiment. A laboratory incubation experiment demonstrated that dissipation of atrazine in Birganbigil soil was more rapid than in three other soils from the Murrumbidgee and Murray Valleys. Dissipation rate and atrazine adsorption were both correlated with the organic carbon content of the soils, which ranged from 1.43% to 0.72%. There was no correlation between either dissipation rate or adsorption and clay content, even though clay contents ranged from 37 to 78%.  相似文献   

14.
2-Methyl-2-(methylsulphinyl)propionaldehyde O-methylcarbamoyloxime (aldicarb sulphoxide), aldoxycarb, oxamyl and methomyl were incubated at 10°C in soil samples taken from layers above and below shallow ground-water tables at four locations in the Netherlands. Soil samples from above the water table were incubated under moist and aerobic conditions. The anaerobic conditions below the water table were simulated by incubating the soil samples under 0.5-1 cm of ground water, and a nitrogen atmosphere. During incubation, the pH and redox potentials were measured. Less than 5% of the oxamyl and methomyl remained after one day in four water-saturated, anaerobic subsoils. The half-lives of aldicarb sulphoxide and aldoxycarb ranged from 5.1 to 131 days in the four anaerobic subsoils. Conversion rates in the aerobic soil layers above the water table were from 8 to more than 100 times lower than in the water-saturated layers in the same soil profile. Half-lives in the aerobic soils ranged from 26 days for oxamyl in loamy fine sand (pH 8.0), to 1100 days for aldoxycarb in fine sand (pH 5.0). When soil from below the water table was incubated aerobically, the conversion rates of oxamyl and aldoxycarb were drastically reduced. The opposite was found when an originally aerobic soil was incubated anaerobically. Autoclaving the incubation systems retarded the conversions.  相似文献   

15.
Fluroxypyr-MHE (methylheptyl ester) was added to four soils and incubated at 26 ± 1°C and approximately 0.1 MPa moisture. After initial rapid hydrolysis of the ester to fluroxypyr, fluroxypyr degraded with half-lives of 12, 12, 23, and 7 days in Barnes loam, Catlin silt loam, Hanford sandy loam, and Mhoon clay soils, respectively. Two metabolites (4-amino-3,5-dichloro-6-fluoro-pyridin-2-ol and 4-amino-3, 5-dichloro - 6 - fluoro - 2 -methoxypyridine) were identified, with the pyridinol at its maximum concentration after 2 to 4 weeks of incubation, and the methoxypyridine after 8 weeks. Degradation rates of fluroxypyr and its pyridinol were not significantly altered by diurnally varying soil temperature (21°C to 32°C) or moisture, nor by the presence of growing grass. Methoxypyridine dissipation was more rapid under greenhouse conditions, suggesting that laboratory studies underestimated the dissipation rate of this metabolite.  相似文献   

16.
A search was made forRhizoctonia solani-suppressive soils by establishing many small experimental plots, half of which were planted withRhizoctonia-infected seed potatoes and the other half with disinfected seed stock. The sclerotium index of the harvested tubers was compared witht that of the seed potatoes. In suppressive soils, the sclerotium index of the harvest is much lower than that of the seed potatoes. None of the plots on holocene marine soils (loamy sand, sandy loam, clay loam and clay) proved to be suppressive in 1978 and 1979. Only on pleistocene, slightly acid sandy soil suppressiveness was observed. In 1978, four out of twelve plots showed suppressiveness when the plots were planted with seed potatoes produced on a sandy soil. In 1979, only two out of thirtyone plots were slightly suppressive when planted with seed potatoes produced on a young clay loam from a new polder. A higher percentage of sclerotia on tubers from sandy soils proved to be infected with antagonistic fungi (73%) than of those on tubers from marine clay or loam soils (25%). Factors that influence suppressiveness are suggested.  相似文献   

17.
The persistence of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), [14C]dicamba (3,6-dichloro-2-methoxybenzoic-7-14C acid) and propanil [N-(3,4-dichlorophenyl)propionamide] at rates equivalent to 1 kg ha?1, were studied under laboratory conditions in a clay loam, a heavy clay and a sandy loam at 85% of field capacity and at 20±1°C, both singly and in the presence of herbicides normally applied with these chemicals as tank-mix or split-mix components. The degradation of bromoxynil was rapid with over 90% breakdown occurring within a week in the heavy clay and sandy-loam soils, while in the clay-loam approximately 80% of the bromoxynil had broken down after 7 days. In all three soils degradation was unaffected by the presence of asulam, diclofop-methyl, flamprop-methyl, MCPA, metribuzin or propanil. Propanil underwent rapid degradation in all soil treatments, with over 95% of the applied propanil being dissipated within 7 days. There were no noticeable effects on propanil degradation resulting from applications of asulam, barban, bromoxynil, dicamba, MCPA, MCPB, metribuzin or 2,4-D. The breakdown of [14C]dicamba in a particular soil was unaffected by being applied alone or in the presence of diclofop-methyl, flampropmethyl, MCPA, metribuzin, propanil or 2,4-D. The times for 50% of the applied dicamba to be degraded were approximately 16 days in both the clay loam and sandy loam, and about 50 days in the heavy clay.  相似文献   

18.
根据青海湖流域1987—2010年5期遥感图像解译,在青海湖北部区域存在毗邻的30 a未曾变动草地和耕地。以这两类土壤为研究对象,对其0~60 cm土层的土壤总碳、土壤全氮、土壤粒度组分进行对比研究。结果表明:草地和耕地土壤总碳和全氮含量以30 cm为界,分异明显,界上草地总碳和全氮含量大于耕地,而界下两者之间差异较小。另外,草地总碳和全氮含量最大值出现在0~10 cm,耕地总碳和全氮含量最大值出现在10~20 cm。草地和耕地粒度组成上都属于砂黏壤级,其中草地粉砂和黏粒大于耕地,而砂含量小于耕地。30 cm以上,草地和耕地间土壤粒度组分差异大,30 cm以下差异小。草地土壤黏粒和粉砂组分与总碳(P0.05)、全氮(P0.01)呈显著相关,而土壤砂粒组分与其相关性不显著;耕地总碳和全氮与各土壤粒级组分之间均无显著相关性。  相似文献   

19.
The persistence of [14C] 2,4-D at a rate equivalent to 1 kg/ha was compared under laboratory conditions in samples of heavy clay, sandy loam, and clay loam at 85% of field capacity moisture and 20 ± 1°C which had either received no pre-treatment, or had been pre-treated for 7 days at the 2 μg/g level with the herbicides benzoylprop-ethyl, diclofop-methyl, dinitramine, flamprop-methyl, nitrofen, picloram, tri-allate, trifluralin, and a combination of tri-allate and trifluralin. The breakdown of [14C] 2,4-D was also studied in the same soils that had similarly received pre-treatments of 2 μg/g of the cereal seed dressing Vitaflo-DB, the insecticide, malathion, and a combination of Vitaflo-DB and malathion. In each soil type, the half-life of the 2,4-D was similar regardless of whether the soil had, or had not, received any pre-treatment, indicating that none of the chemicals investigated adversely affected the soil degradation of 2,4-D.  相似文献   

20.
The persistence of [14C]MCPA at a rate equivalent to 1 kg ha?1 was studied under laboratory conditions in a clay loam, heavy clay and sandy loam at 85% of field capacity moisture and 20±1°C both alone and in the presence of tri-allate, trifluralin, tri-allate and trifluralin, malathion, Vitaflow DB, malathion and Vitaflow DB, bromoxynil, bromoxynil and asulam, bromoxynil and difenzoquat, dicamba, dicamba and mecoprop, linuron, MCPB, metribuzin, propanil, TCA, benzoylprop-ethyl, diclofop-methyl, and flamprop-methyl. Except in the soils treated with asulam, the half-lives of [14C]MCPA in all three soil types were similar, being approximately 13±1 days, thus indicating that none of the other chemicals studied adversely affected the soil degradation of MCPA. In the asulam treated soils, the half-lives of the MCPA were about 3 days longer than in non-asulam treated soils; the effect was most marked in the clay loam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号