首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Barley plants (Hordeum distichum, L., cv. Zita) grown in a sandy soil in pots were adjusted during a pretreatment period of 5 days to three levels of soil water osmotic potential by percolating 61 of a nutrient solution with additional 0, 22.3 and 44.6 mM KCl. A drying cycle was then started and the plants were harvested when the soil water matric potential had decreased to –1.4 MPa, respectively 6, 7 and 8 days later.No significant differences in dry matter yields, transpiration coefficients and wilting percentages were found between treatments.During the drying cycle leaf water potential ( l ) decreased concomitantly with decrease in soil water potential ( s ) with almost constant and similar differences ( l s ) for all treatments despite differences in levels of potentials. The concomitant decrease in leaf osmotic potential () was due partly to dehydration (58%) and partly to increase in leaf solute content (42%) independent of treatment. The part of total osmotic solutes due to K decreased relatively during the drying cycle.Close relationships were found between and l as functions of relative water content (RWC). Identical curves for the two levels of salt treatment agree with similar concentrations of K, Cl, and ash found for salt treated plants indicating that maximum uptake of macro nutrients may have been reached.During the main part of the drying cycle the turgor potential as function of RWC was higher and decreased less steeply with decreasing RWC in the salt treated than in the non-salt treated plants.In the beginning of the drying cycle additions of KCI lowered the transpiration rates of the salt treated plants resulting in a slower desiccation of the soil and hence an increased growth period. A delay in uptake from a limited soil water supply may be advantageous during intermittent periods of drought.  相似文献   

2.
Three trickle irrigation schedules, two of which were scheduled according to soil water potential ( soil) (tensiometer method) and daily stem contraction (DSC) (dendrometer method) respectively and the other one was a schedule of restricted water supply, were applied to a mature peach orchard.The annual water application based on soil was greater than that based on DSC. However, tree growth, fruit size and leaf water potential (leaf) on the trees in the dendrometer scheduling plot did not differ from those in the tensiometer scheduling plot while the premature fruit drop and fruit bud initiation were greatly different. The restricted water supply treatment limited significantly both tree and fruit growth. In addition, the lower leaf was observed on the trees in this plot.Further study shows that use of the dendrometer method for scheduling irrigation satisfies the water needs of the plant and that the tensiometer method is less accurate.Abbreviations leaf leaf water potential - soil soil water potential - DSC daily stem contraction - LVDT linear variable displacement transducer - PET potential evapotranspiration  相似文献   

3.
Summary The onset of water stress within a crop is defined as the time at which the rate of water loss declines below that of a well watered crop in the same locality. The relation to the onset of water stress and soil water status of several readily measured plant parameters was investigated in crops of wheat and soybeans over three years. Evapotranspiration ET was monitored with weighing lysimeters. A noticeable decline in the rate of ET for both wheat and soybeans was detected once 20% to 30% of the total plant available water PAW remained in the 1 m deep lysimeter soil profile. Extension growth of wheat declined when PAW was 33% and 34% in two years of measurement. In soybeans, the decline in the rate of leaf extension coincided with the decline in the rate of ET. Midmorning measurement of exposed leaf water potential L, covered leaf water potential CL and covered plant leaf water potential CP yielded similar results for both wheat and soybeans. Day-to-day variability was least in CP and most in L. Values of CP, L and CL decreased rapidly with PAW < 30%. Daily values of leaf diffusive conductance were variable but there was a general decline in conductance with PAW < 30%. It is suggested that CL may be the easiest and most reliable parameter to monitor as a means of detecting the onset of stress. The results indicated that PAW levels in the root zone of 50% for wheat and 30% for soybean probably do not affect extension growth or plant water status parameters and can thus be used as criteria for irrigation scheduling.Seconded from the Water Research Commission, Pretoria; present address: CSIRO, Division of Irrigation Research, Griffith, N SW 2680, Australia  相似文献   

4.
Summary Recent studies have shown that the grain yields of corn (Zea mays L.) and wheat (Triticum aestivum L.) are related to the degree of water stress they undergo. The purpose of the study reported here was to establish relationships between crop temperature and the grain yields, phenological development, evapotranspiration rates (ET) and leaf water potential ( l ) of two hybrids of grain sorghum (Sorghum bicolor L. Moench) subjected to varying levels of plant water stress. The study was conducted at the University of Nebraska Sandhills Agricultural Laboratory in 1978 on a Typic Ustipsamment (Valentine fine sand) soil. The sorghum hybrids used were RS 626 and NB 505. Four irrigation treatments were applied in order to subject the crops to varying levels of water stress during each of three major growth stages. Soil moisture was monitored with a neutron probe. ET was estimated with the water balance technique. Crop temperature was measured with an IR thermometer and leaf water potential was measured with a Scholander pressure bomb. Grain yields were reduced by water stress occuring at anytime during the growing season. Yield reductions were largest when stress occurred during only the grainfill period and were least when stress occurred during the entire growing season. The percentage reduction in sorghum grain yield can be described by an index involving the seasonal accumulation of the daily mid-day temperature differences between well-watered and stressed crops ( TSD). As TSD values increased, ET decreased. However, the correlation of ET with TSD was relatively low (R2 = 0.60) probably due to the limited amount of data available for analysis and inaccuracies in the soil water balance method used to estimate ET. The mid-day temperature of well-watered rows ranged between 18.0 and 32.8 °C with a mid-day temperature range of about 0.5 °C between the well-watered rows in various plots for several days following an irrigation. However, in certain instances, the mid-day temperature range increased to 1–2 °C for a few days before irrigation. This suggests that certain of the rows experienced water stress and should have been irrigated earlier. Yield data support that conclusion. Range in crop temperature within a field appeared to be a sensitive indicator of crop water stress in sorghum. No significant difference in the phenological development of sorghum resulted from water stress except in one NB 505 plot in which plants were stressed throughout the entire season. In that plot, the stressed plants lagged in development behind non-stressed plants by approximately ten days. The differences in mid-day leaf water potentials ( l ) and crop temperatures (T) between stressed and non-stressed vegetation were examined. As T increased up to about 4 °C, l , also increased. Beyond that point, l decreased while T continued to increase. This behavior was attributed to stomatal closure which permitted an increase in l of the stressed plants (hence reducing l ) even as T continued to increase.Published as Paper No. 6551, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11–33 and Nebraska Agricultural Experiment Station Project 11–50. The work upon which this publication is based was supported in part by funds provided by the Office of Water Research and Technology B-044-NEB, US Department of the Interior, Washington, DC, as authorized by the Water Research and Development Act of 1978. This article was sponsored in part by the Nebraska Water Resources Center, Institute of Agriculture and Natural Resources, University of Nebraska-LincolnResearch Assistant, Associate Professor, Research Assistant, and Associate Professor, University of Nebraska, Lincoln. Contents of this puplication do not necessarily reflect the views and policies of the Office of Water Research and Technology, US Dept. of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government  相似文献   

5.
Summary Seed-cotton yield, yield components and vegetative growth were determined under different irrigation frequencies and wetting depths with a self-propelled moving-irrigation-system (MSIS) in 1986 and 1987. Irrigation timing was determined in both years by pre-irrigation, mid-day plant water potential (w). The amount of water to be applied was determined by measuring the soil moisture deficit. In 1987, the effect of a change from one irrigation frequency and wetting depth to another at mid-flowering was also examined. Linear responses of relative seed-cotton yield to the amount of evapotranspiration (ET) were found for both years with similar slopes but different intercepts. Significant positive regressions were obtained between pre-irrigation plant w and relative seed-cotton yield, and vegetative growth during the linear growth stage. Seed-cotton yield was affected by both wetting depth and pre-irrigation plant w. The deeper the irrigation the higher was the seed-cotton yield for each pre-irrigation plant w. Irrigation frequencies which maintained plant w above -1.5 MPa during vegetative growth, flowering and boll-filling resulted in maximum production. The boll filling stage appeared to be a very sensitive one, as boll weight was found to be the main yield component responding to irrigation treatments. At a wetting depth of 120 cm, higher seed-cotton yields were obtained than at a more shallow wetting. Different irrigation managements resulted in different turgor potentials (t) mainly during mid-day. Both leaf water vapour conductance and net assimilation rate were sensitive to leaf w.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagon, Israel, No. 2903-E, 1990 series. Research was supported by the U.S.-Israel Binational Agric. Res. and Develop. Fund.  相似文献   

6.
Summary Cowpea (Vigna unguiculata L.), grown widely under both irrigated and dryland conditions, is well adapted to drought and high temperature and is moderately salt tolerant. Data on photosynthetic response and regulation of water relations in cowpea under salinity stress is lacking. Therefore, in conjunction with a field plot experiment to establish the leaching requirement of cowpea, measurements were made of carbon dioxide assimilation rates (A) by 14CO2 uptake, leaf conductances to H2O (g1) by tritum uptake, and to CO2 (g), and leaf total water potential (t 1) and osmotic potential ( 1).Cowpeas, grown in field plots containing Pachappa fine sandy loam (mixed, thermic, Mollic Haploxeraff), were irrigated daily with saline water (1,350 mg 1–1 total salt concentration) to achieve leaching fractions of 0.17, 0.13, 0.09, 0.07, and 0.02. Cowpea maintained high leaf water potentials, high rates of CO2 assimilation and high leaf conductances under moderately saline conditions (high leaching). Values of t 1 and 1 for high leaching were consistently 50 to 200 J kg–1 higher than for low leaching throughout the day. Calculating 1 at full leaf turgor eliminated diurnal variation in 1. As leaching decreased, however, A, g1, and g, decreased significantly. About 45% of the 1°C assimilated by the leaf was incorporated rapidly into ethanol insoluble compounds. The relationship between A and g1 for cowpea was similar to that reported for other crops.Contribution from the US Salinity Laboratory, USDA-ARS, 4500 Glenwood Dr., Riverside, CA. 92501, USA  相似文献   

7.
The usefulness of continuous measurement of soil and plant water status for automated irrigation scheduling was studied in a drip-irrigation experiment on plum (Prunus salicina Black Gold). Two levels of water restriction were imposed at different phenological periods (from pit-hardening to harvest, post-harvest) and compared with a well irrigated control treatment. Soil matrix water potential (soil) was measured with granular matrix sensors (Watermark); and short-period trunk diameter variation (TDV) was measured with linear variable displacement transformers. The Watermark sensor readings were in reasonable agreement with the irrigation regime and showed a good indication of plant water status across the season (r2=0.62), although they were a better predictor of stem water potential (stem) in the dry range of soil. Nonetheless, the most important drawback in their use was the high variability of readings (typical CV of 35–50%). From TDV measurements, maximum daily shrinkage (MDS) and trunk growth rate (TGR) were calculated. Their performance was also compared with stem, which had the lowest variability (CV of 7%). During most of the fruit growth period, when TGR was minimum, MDS was higher in the less-irrigated treatment than in the control and correlated well (r2=0.89) with stem. However, after harvest, when TGR was higher, this correlation decreased as the season progressed (r2=0.73–0.52), as did the slope between MDS and stem, suggesting tissue elasticity changes. Later in the season, TGR was better related to plant water status. These observations indicate some of the difficulties in obtaining reference values useful for irrigation scheduling based exclusively on plant water status measurements.  相似文献   

8.
Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.), growing on a low water retention capacity soil, were submitted to three different irrigation treatments over four years: 100% ETc all year (T-0), 25% ETc all year except during the rapid fruit growth period when 100% ETc was applied (T-1) and 100% ETc all year, except during the rapid fruit growth period when 70% ETc was applied (T-2). A water saving of 30 and 20% was achieved in the T-1 and T-2 treatments, respectively. The plant responses to irrigation treatments were similar in all the years studied. Leaf water potential decreased during deficit irrigation periods in T-1 and T-2 treatments. Larger differences were found in values taken at predawn ( pd) than at midday ( md), indicating that pd is a more useful indicator of plant water status. There was neither osmotic nor elastic adjustment in response to deficit irrigation treatment. A clear separation between the main periods of shoot and fruit growth was found, which can be considered an advantageous characteristic in applying regulated deficit irrigation strategies. Onset of the critical period of rapid fruit growth could be determined precisely by considering the decrease in relative fruit growth rate values. T-2 treatment did not induce a significant reduction in total yield, but it caused a delay in reaching marketable lemon fruit size. T-1 treatment did not affect total yield, with a reduction in yield on the first pick occurring in only one year. Chemical characteristics of lemon fruit were not significantly modified by irrigation treatment.  相似文献   

9.
Summary Lysimeters have been frequently used to study crop response to the onset of water stress. To test the representativeness of lysimeter derived criteria for the onset of crop water stress, spring wheat (Triticum aestivum L.) was grown in two field plots with 1.0 m deep lysimeters in the center of each plot. One plot was well-watered while the second was subjected to a drying period with no irrigation. Crop water stress was assessed by monitoring leaf water potential ( l ), stomatal diffusive resistance (r s ), canopy temperature (CT), evapotranspiration (ET), and soil water content in both plots and lysimeters. The rate of change of all these measured parameters, when compared to the well-watered field control-plot revealed that the field-grown plants showed signs of water stress long before the lysimeter-grown plants. Water stress developed gradually for the field crop, but the transition from the well-watered to the stressed condition happened abruptly for the lysimeter-grown plants. Once this transition occurred, the lysimeter-grown plants were more drought stressed than the field-grown plant. Water profiles measured inside the lysimeter were different from those measured in the adjacent plots. An increase in root length density with depths below 0.6 m was observed in the lysimeters as opposed to a quasimonotonic decrease with depth in the field. The response of the lysimeter-grown plants was a result of the anomalous water content and root distribution. We conclude that threshold values of ET, l , r s , and CT for the onset of water stress obtained when deep-rooted crops grown in a shallow lysimeter are subjected to drought periods may not be directly applicable to field situations.  相似文献   

10.
Summary Water deficit (water stress — WS) and excess salt (salt stress — SS) evoke similar plant responses, yet clear differences have been observed. The effect of the two forms of stress applied consecutively to cotton (Gossypium hirsutum) and pepper (Capsicum annuum) was studied in a growth chamber (29/20°C day/night temperature, 50% RH, 12-h photoperiod) in 2.5-liter containers packed with a silt loam soil.Leaf water potential () under increasing WS [soil water potential decrease from –0.16 to –1.10 MPa] of transpiring cotton and pepper plants declined to lower levels than under equivalent SS. The decline of leaf solute potential 0 on the other hand, was less under WS than under SS, resulting in reduced turgor potential ( p ), in contrast with turgor maintenance under SS. Predawn turgor potential of WS plants was maintained at all levels of soil water potential. Transpiration, CO2 assimilation and light period leaf extension rate were higher under low soil water potential produced by salinity than an equivalent value produced by water deficit.The more severe effect of WS was attributed to incomplete osmotic adjustment — the reduction in solute potential did not keep pace with the reduction in leaf water potential, and to increased root interface resistance in the dry soil.The leaf sap of cotton under WS had a higher proportion of sugars (65%) than electrolytes, compared to SS. When WS was converted to SS and plant solute potential decreased, electrolytes were taken up at the expense of a reduction in the sugar concentration. Water stress and salt stress may have an additive effect in depressing growth. But at equivalent levels, the relative magnitude of the effect of low soil matric potential (WS) on plant growth was twice as great as that of low soil solute potential (SS).  相似文献   

11.
Summary The effects of frequent and shallow soil wetting by surface drip irrigation on root growth, morphology, and location, and their impact on plant sensitivity to irrigation management were studied in cotton (Gossypium hirsutum L.). Daily drip irrigation, which wetted the 0 to 40-cm soil depth, encouraged root development mainly around the drippers. Water extraction took place mostly from 0 to 20 cm below the drippers, where the roots were concentrated. Shallowness of root growth was not altered by the expansion and deepening of the wetted soil zone which resulted from an increase in amount of irrigation water. The shallow and restricted root system was characterized by a high fraction of thin roots (less than 1 mm dia.) which comprised almost 90% of the root dry matter. Root proximity to the drippers and the limited amount of water in the rooted soil led to a sensitive and quick response of the plants to small amounts of irrigation. A supply of 1.0 mm H2O given at midday to 70 day-old plants resulted in a leaf water potential (L w) increase from –1.64 to –1.32 MPa over a 20-min period. This amount of irrigation comprised 15% of the average daily quantity. A 24 h delay in irrigation to 80 dayold plants was enough to decrease L w from –1.41 to –2.42 MPa. This decrease was caused by a soil water deficit of less than 6 mm H2O. Extending the irrigation delay to 72 h affected yield and earliness, although the deficient amount of water was supplied over the several days after the treatment. A strong response to minor, but continuous, differences in the daily irrigation amount was detected. Differences in irrigation of less than 1 mm H2O per day applied during the whole growth season substantially affected L w, yield and earliness. It was concluded that the establishment of a shallow and restricted root system resulted in strong dependence of the plants on frequent and sufficient supply of water, and temporary minor changes in irrigation affected plant water status and productivity.  相似文献   

12.
Summary The growth response of kenaf (Hibiscus cannabinus L.) to four irrigation schedules based on leaf water potential l was evaluated in a semi-arid tropical environment. Total dry matter production was unaffected by regimes in which the mean value of leaf water potential l (mean of solar noon and dawn value) did not fall below –1.26 MPa. Stem elongation was more sensitive than dry matter accumulation to plant water stress. — The economic yield for paper pulp production (i. e. total plant dry matter production minus that of the foliage and upper 60 cm of stem) increased with the frequency of irrigation. — Growth recovery by kenaf following a period of water stress was examined. Alleviation of water stress 10 weeks after irrigation, when l was –1.60 MPa, produced stem elongation rates that were greater than those of plants previously receiving irrigation. This ability to withstand water stress and partially compensate in growth following alleviation of the stress indicates that the kenaf crop has stress response features suitable for rainfall only production under semi-arid tropical conditions. — Irrigation schedules based on l resulted in water applications tailored to crop requirements in that water use increased, and the time interval between irrigation decreased, with increasing canopy development as well as with increasing evaporative demand. However, erratic fluctuations in l between irrigations make scheduling by this method difficult and the use of daily mean, dawn or noon values of l for scheduling irrigation of kenaf cannot be recommended in environments of high evaporative demand. The factors contributing to these fluctuations in (l) are discussed.  相似文献   

13.
Summary The use of canopy and air temperature differences to compute a crop water stress index (CWSI) for assessing plant water status was investigated using cotton crop canopies that either fully or partially covered the ground. The complete ground cover canopy condition was studied in a well watered moisture regime in a rainout shelter with measurements made on six Texas cotton race stocks. The partial ground cover canopy situation was investigated in a well watered moisture regime of a commercial cotton variety Paymaster 266 grown in the field. The slope of the nonstressed baseline of the CWSI for a cotton canopy with about 50% ground cover was approximately one-half that reported for full canopies. Values of CWSI calculated with theoretical and empirical procedures agreed more closely under a complete canopy condition than under a partial canopy situation. Values of aerodynamic resistance (r a ) and canopy resistance for well watered soil moisture conditions (r ep )were estimated in order to use the theoretical procedure of computing CWSI. Values of r a ranged from 10 to 15 sm–1 and r cp from 50 to 60 sm–1. Both the theoretical and empirical procedures showed much promise, but more information is needed to develop techniques for evaluating r a and r cp under differing canopy and environmental conditions.  相似文献   

14.
Root system parameters determining water uptake of field crops   总被引:2,自引:0,他引:2  
Summary The distribution of a crop rooting system can be defined by root length density (RD), root length (RL) per soil layer of depth z, sum of root length (SRL) in the soil profile (total root length) or rooting depth (z r . The combined influence of these root system parameters on water uptake is not well understood. In the present study, field data are evaluated and an attempt is made to relate a daily maximum water uptake rate (WUmax) per unit soil volume as measured in different soil layers of the profile to relevant parameters of the root system. We hypothesize that local uptake rate is at its maximum when neither soil nor root characteristics limit water flow to, and uptake by, roots. Leaf area index and the potential evapotranspiration rate (ET p ) are also important in determining WUmax, since these quantities influence transpiration and hence total crop water uptake rate. Field studies in Germany and in Western Australia showed that WUmax depends on RD. In general, there was a strong correlation between the maximum water uptake rate of a soil layer (LWUmax) normalized by ET p and RL normalized by SRL. The quantity LWUmax · ET p -1 was linearly related to (RL/SRL)1/2. The data show that the single root model will not predict the influence of RD on WUmax correctly under field conditions when water-extracting neighboring roots may cause non-steady-state conditions within the time span of sequential observations. Since the rooting depth z r was linearly related to (SRL)1/2, the relation: LWUmax · ET p -1 = f (RL1/2/z r ) holds. Furthermore it was found that the maximum specific uptake rate per cm root length URmax was inversely related to RD1/2 and to SRL1/2 or z r of the profile. Observed high specific uptake rates of shallow rooted crops might be explained not only by their lower RD-values but also by the additional effect of a low z r . The relations found in this paper are helpful for realistically describing the sink term of dynamic water uptake models.Growing plants extract water from the soil to meet transpiration needs. Rates of transpiration and of water uptake are set by evaporative demand and by plant and soil factors which influence capacity to meet that demand. These factors include crop canopy size and leaf characteristics, root system characteristics and hydraulic properties of the soil and the soil-root interface. Soil and root system properties vary with depth and all factors vary in time, so that parameters related to them require constant updating over a crop season.Dynamic simulation models describe water uptake by root systems under field conditions as a function of soil depth and time. Many of these simulation approaches are based on Gardner's (1960) single root model (Feddes 1981). These simulation procedures follow the assumption that water uptake is proportional to a difference in water potential between the bulk soil and the root surface or the plant interior, to the hydraulic conductivity of the soil-plant system and to the effectiveness of competing roots in water uptake. The effectiveness factor accounts more or less empirically for the influence of various root system parameters on water uptake such as percentage of active roots absorbing water, root surface permeability, root length density determining the distance between neighbouring roots, or total root length and depth of the root system. Such models however, will not always reflect correctly the influence of root system characteristics on water uptake since these assumptions have rarely been tested under field conditions. In many instances, there is better agreement between simulated and measured total water use of plants than between predicted and observed water depletion by roots within individual layers of the soil profile (Alaerts et al. 1985).Water uptake by an expanding root system as a function of depth and time has been studied under field conditions for several crops (listed in Herkelrath et al. 1977a; Feddes 1981; Hamblin 1985). They show that the dynamics of water uptake depend on root length density and the availability of soil water. However, the combined influence of root length density, total root length and rooting depth on the water uptake pattern has not been assessed. An evaluation of root system parameters with respect to soil water extraction should aid our understanding of how roots perform under field conditions and may assist our efforts to formulate the water uptake function of roots in dynamic simulation studies more realistically.The aim of the present investigation is to develop an approach that relates measured water uptake rates to relevant parameters of the root systems. This approach will be confined to situations where water uptake in a soil layer is not restricted by unfavorable soil conditions, such as in wet soil, by insufficient aeration and, in dry soil, by reduced water flow towards roots or by increased contact resistance (Herkelrath et al. 1977b). We will define a maximum water uptake rate WUmax that is neither soil-limited nor appreciably limited by the decreasing permeability of aging roots. This WUmax will be related to relevant root system parameters as they exist when WUmax is observed. Hence, water uptake by roots in a very wet, as well as in a dry soil, has been excluded from consideration.  相似文献   

15.
Summary Water application pattern, WAP, is one of the most important factors that determine the instantaneous and the cumulative application rates of moving irrigation machines. The mathematical background of a procedure to predict and design the WAP of moving irrigation machines is introduced. It includes a mathematical analysis of the effect of pressure head, height and spacing between emitters on the WAP, and a nomograph that presents this analysis graphically and illustrates the design procedure of the application pattern of irrigation machines.Abbreviations P()a water application rate at a normalized radial distance from the emitter [m/s] - ka number of linear segments needed to represent the pattern - s/Ra normalized radial distance from the emitter - Ra wetted radius [m] - sa radial distance from the emitter [m] - n j n i/ha normalized water application rate at point - j, ha maximum water application rate [m/s] n j water application rate at point j [m/s] - j =m j/Ra normalized radial distance of point j from emitter - m ja radial distance of point - ja from emitter [m], CWAP - (x)a Cumulative Water Application Pattern: amount of water per unit area applied at a distance - xa from the travel path of the emitter [m3/m2] - xa distance from the travel path of the emitter [m] - T xa time of application at a distance - xa from the travel path of the emitter [s] - va velocity of propagation of the machine [m/s] - k 1a the outmost linear segment that its radial distance from the emitter - m k1a is smaller than the distance of the travel path from the emitter - x, T ja time at which the - j tha linear segment (ring) stops influencing the point located at a distance - xa from the emitter - 1, 2, 3a dimensionless numbers derived by dimensional analysis - ua water jet velocity [m/s] - ga gravity acceleration [m/s2] - da nozzle diameter [m], v kinematic viscosity [m2/s] - Ha emitters height [m] - , a regression analysis coefficients - Paa Pattern fit coefficient for water application - F(r)a normalized desired water application pattern [1/m] - f(r)a normalized actual water application pattern [1/m] - La common distance on which - F(r) and f(r)a are defined [m], SP spacing interval between emitters [m] - DSa dimensionless spacing interval between emitters - DSa variation of dimensionless spacing interval - Paa variation of Pa coefficient - Pa pressure head [kPa]  相似文献   

16.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

17.
Summary The Lewis-Milne (LM) equation has been widely applied for design of border irrigation systems. This equation is based on the concept of mass conservation while the momentum balance is replaced by the assumption of a constant surface water depth. Although this constant water depth depends on the inflow rate, slope and roughness of the infiltrating surface, no explicit relation has been derived for its estimation. Assuming negligible border slope, the present study theoretically treats the constant depth in the LM equation by utilizing the simple dam-break wave solution along with boundary layer theory. The wave front is analyzed separately from the rest of the advancing water by considering both friction and infiltration effects on the momentum balance. The resulting equations in their general form are too complicated for closed-form solutions. Solutions are therefore given for specialized cases and the mean depth of flow is presented as a function of the initial water depth at the inlet, the surface roughness and the rate of infiltration. The solution is calibrated and tested using experimental data.Abbreviations a (t) advance length - c mean depth in LM equation - c f friction factor - c h Chezy's friction coefficient - g acceleration due to gravity - h(x, t) water depth - h 0 water depth at the upstream end - i() rate of infiltration - f(x, t) discharge - q0 constant inflow discharge - S f energy loss gradient or frictional slope - S0 bed slope - t time - u(x, t) mean velocity along the water depth - x distance - Y() cumulative infiltration - (t) distance separating two flow regions - infiltration opportunity time  相似文献   

18.
Effects of salinity on germination,seedling growth,and yield of melons   总被引:3,自引:0,他引:3  
Summary Four melon (Cucumis melo L.) cultivars were tested for salt tolerance at germination, seedling growth stages, and plant maturation. Noy Amid was the most tolerant during germination, achieving 56% germination in 15,000 mg/l NaCl solution. However, this cultivar and Eshkolit Ha 'Amaqim were relatively sensitive during the first 4 days' growth of the radicle and the hypocotyl, and the first 3 weeks' development of the seedling. Their yields were reduced under saline as compared with non-saline field conditions. In contrast, Honey Dew and Rochet had little or no germination in 15,000 mg/l NaCl but showed salt tolerance during seedling growth stages. Yield of Honey Dew was unaffected by saline field conditions, and that of Rochet was not significantly reduced from the non-saline control. Thus, selection for salt tolerance in melons appears feasible during early vegetative growth stages but not during germination.Contribution No. 1032-E, 1984 series, from the Agricultural Research Organization, Bet Dagan, Israel  相似文献   

19.
Rapid field evaluation of drip and microspray distribution uniformity   总被引:5,自引:0,他引:5  
The Cal Poly ITRC irrigation evaluation programs have been widely used to assess the global distribution uniformity (DU) of drip and microsprayer irrigation systems. The field procedures and formulas used in the program are presented in this paper. The system DU is estimated by mathematically combining the component DU values. DU components include pressure differences, other causes (such as manufacturing variation, plugging, and wear), unequal drainage, and unequal application rates. Results are presented from evaluations by several entities, including Cal Poly ITRC. Cal Poly evaluations of 329 fields provided an average DUlq of 0.85 for drip and 0.80 for microspray. Approximately 45% of the non-uniformity was due to pressure differences, 52% was due to other causes, 1% due to unequal drainage, and 2% due to unequal application rates. The data show that with good design and management, it is possible to have high system DU values for at least a 20-year system life.  相似文献   

20.
Summary Changes in infiltration and runoff caused by pitting and mulching under sprinkler irrigation were studied on two soil types. Pitting or diking was done with an implement called a dammer-diker. Five soil treatments were applied: shallow and deep dammer-diker, shallow dammer-diker with mulch, bare, and a mulched soil, combined with two water application rates. Total water infiltration and runoff varied during the experiment. Runoff decreased with area of water storage provided by the pits and the less water was applied. Mulch treatments also reduced runoff. Surface water storage decreased during the season. Changes in soil physical properties due to pitting were more important in controlling runoff than surface water storage.The effective saturated hydraulic conductivity of the soil progressively decreased through the season for all soil treatments and water application rates.A model was developed to simulate the effect of pits on runoff. On a silt loam soil, simulated percent runoff and accumulated runoff over time for the bare and pitted treatments agreed closely to measured values. The agreement of simulated to measured runoff for a silty clay loam soil was not as good probably because of cracking which the simulation model did not take into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号