首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
杀菌剂抗性分子检测技术的研究进展   总被引:1,自引:0,他引:1  
靶标病菌基因突变是许多内吸性杀菌剂出现抗性的根本原因,检测与抗药性相关的靶标病菌基因突变对阐明抗药性发生的分子生物学机制及进行早期诊断具有重要意义。目前已成功用于检测靶标病菌抗药性菌株的分子检测技术有6种:等位基因特异性扩增、限制性片段长度多态性、等位基因特异性寡核苷酸杂交、单链构象多态性、实时定量PCR、变性高效液相色谱分析。这些技术能够快速、灵敏地检测田间早期出现的抗药性或抗药性种群的发展动态,在病害的可持续管理系统中科学使用杀菌剂方面发挥着重要作用。  相似文献   

2.
A simulation model was used to assess the control efficacy of, and the buildup of resistant populations to, systemic fungicides as affected by preventive vs responsive (curative) treatments with a protectant fungicide, or with a mixture composed of a systemic and a protectant fungicide. The variables introduced in the model were: rate of fungicide weathering, coverage efficacy, and relative fitness of the resistant population of the pathogens. In all simulated epidemics (with different combinations of apparent infection rates, critical disease levels and rates of weathering of the fungicides), preventive treatments, before the critical disease levels were reached, were significantly more effective than responsive (curative) treatments. At low rates of weathering of the protectant fungicide (half-life of the protectant greater than or equal to that of the systemic), the buildup of the resistant population was significantly inhibited when a mixture was used either preventively or responsively. At high rates of weathering of the protectant fungicide (half-life of the protectant less than that of the systemic), both the buildup of the resistant population and the control efficacy were dependent on the control program used and on the different combinations of fungicide weathering, fitness of the resistant population, and coverage efficacy of both the protectant and systemic fungicides.  相似文献   

3.
恶苗病是水稻生产上较为严重的种传真菌病害,咪唑类广谱内吸性杀菌剂咪鲜胺是目前防治该病害的主要药剂。以对咪鲜胺抗性及敏感的田间水稻恶苗病菌为试材,研究了其适合度及对几种常用杀菌剂的交互抗性。结果显示:抗性菌株的抗药性可稳定遗传,其温度敏感性与敏感菌株无明显差异,部分抗性菌株在菌丝生长速率、产孢量、孢子萌发率和致病力方面显著高于田间敏感菌株;咪鲜胺与三唑类及2-氰基丙烯酸酯类杀菌剂之间均无交互抗性。研究表明,对咪鲜胺产生抗性的水稻恶苗病菌具有较强的适合度,在田间自然条件下有可能形成优势群体,因此需合理轮换使用不同作用机制的杀菌剂,以延缓其抗药性的发展。  相似文献   

4.
植物病原菌抗药性遗传研究   总被引:19,自引:0,他引:19  
 植物病原菌对杀菌剂的抗药性是由遗传基因控制的,抗药基因位于细胞质遗传因子或细胞核染色体基因上,细菌对许多药剂如铜制剂、链霉素等的抗药性和真菌对少数药剂如甲氧丙烯酸酯类药剂的抗性属于前一种情况,而真菌对大多数药剂的抗性则属于后一种情况。核基因控制的抗药性又可分为主效基因(major-gene)抗性和微效多基因(poly-gene)抗性,分别使病菌对药剂的抗性表现质量性状和数量性状。病原菌对苯并咪唑类药剂、春日霉素、羧基酰胺类药剂、苯酰胺类药剂、芳烃类药剂、二甲酰亚胺类药剂等的抗性通常为主效基因控制;使病菌表现微效多基因抗性的杀菌剂主要有多果定、羟基嘧啶类药剂、甾醇合成抑制剂(SBIs)等  相似文献   

5.
植物病原菌对杀菌剂抗性风险评估   总被引:16,自引:3,他引:16  
植物病原菌对杀菌剂的抗性风险由基本风险和治理风险组成。杀菌剂使用之前或之初可根据 人工诱变、药剂选择或驯化实验、田间野生敏感菌株敏感性变异、抗药菌株的生物及遗传特 征、杀菌剂作用方式等进行基本抗药风险预测;杀菌剂使用数年之后可根据人工诱变、药剂 选择或驯化、田间药效与抗药性发生、抗药菌株的生物及遗传特征、杀菌剂作用方式与使用 对策等已有资料进行抗药风险评估。目前已有4种方法用于抗药风险评估。由杀菌剂与病害 共同决定的基本抗药风险可分成低、中和高度。基本抗性风险高的药剂合理使用可延缓田间 抗药性发生,中度基本抗性风险药剂不合理使用也可引发田间抗药性发生和药效明显降低。  相似文献   

6.
Following a list of the economically most important fungal wheat diseases, recent trends in chemical seed treatment are discussed. Different fungicide mixtures are now available for the replacement of mercurial dressings, but are generally more expensive. The control of fungal diseases by spraying has become more and more common over the past ten years in certain countries. Advantage has been taken of the curative action of the modern systemic chemicals. The major diseases are powdery mildew, rusts, eyespot, glume-and leaf-blotch. The general application of a fungicide programme is restricted by regional wheat prices, and should also be limited to reduce environmental contamination. Knowledge about economic thresholds and correct timing of control are indispensable, and in special cases the development of warning systems is advisable. The role of Cycocel (chlormequat) is also discussed. A danger of fungicide resistance in populations of plant pathogenic fungi has arisen with the introduction of the systemic fungicides (one-site-inhibitors). As yet, however, no economically important case of fungicide resistance within cereal pathogens is known. Factors favouring the stepwise selection of resistant strains under field conditions are discussed in detail, and experimental data are presented on this subject. Other positive or negative side-effects of the modern fungicides are described.  相似文献   

7.
黑斑病是梨的主要病害之一,近年来不少地区反映多菌灵等传统常用杀菌剂对其防治效果已出现下降。作者从浙江、江苏和安徽3省分离了252株梨黑斑病菌Alternaria kikuchiana,采用菌丝生长速率法检测了其抗药性发生情况。结果发现:所检测的黑斑病菌群体(n=252)对苯并咪唑类杀菌剂多菌灵的抗性频率为57.1%,且全部为高水平抗性(HR);对二甲酰亚胺类杀菌剂异菌脲的抗性频率为46.8%,全部为低水平抗性(LR);对甾醇脱甲基抑制剂类杀菌剂苯醚甲环唑的抗性为低水平(LR)及中等水平(MR),抗性频率均为28.6%;表明梨黑斑病菌对常用杀菌剂已产生较为严重的抗性。供试252株梨黑斑病菌对琥珀酸脱氢酶抑制剂啶酰菌胺的EC50值分布在0.12~3.85μg/m L之间,平均EC50值为(1.21±0.12)μg/m L,且其分布呈近似正态的单峰曲线。研究表明,啶酰菌胺可作为潜在的梨黑斑病防治替代药剂,其平均EC50值(1.21±0.12)μg/m L可作为梨黑斑病菌对啶酰菌胺的敏感性基线。  相似文献   

8.
Plots of spring wheat cv. Baldus were inoculated at GS 13 with four Mycosphaerella graminicola isolates, two relatively susceptible and two relatively resistant to DMI fungicides. Changes in the ratio of relatively susceptible to resistant types following fungicide or water sprays were measured. Three fungicides were compared: flutriafol, which is very mobile within leaves, fluquinconazole, which is less so, and prochloraz, which is almost immobile. All are inhibitors of sterol demethylation. In 1996, fungicide-treated plots were sprayed once with half the recommended dose at GS 39–47. In 1997, three doses were used: one-quarter and one-eighth of the recommended dose and a dual application of two one-eighth recommended doses, a week apart. Isolates were classified using a discriminating dose assay and the ratio of relatively susceptible to relatively resistant isolates in each field plot before and after fungicide application calculated. In both years, the numbers of relatively susceptible and relatively resistant isolates were equal just before fungicide application. All fungicides caused significant selection towards resistance, but the strength of selection varied with fungicide, dose and position in the crop canopy. Fluquinconazole selected most strongly and gave the best control of disease. Interactions between fungicide and dose were not significant. Selection was equally strong all along leaves sprayed with prochloraz, but increased smoothly from base to tip of leaves sprayed with fluquinconazole or flutriafol. Averaged over fungicides, reducing the dose of a single fungicide application from one-quarter to one-eighth slightly reduced selection towards resistance on both leaf layers. The dual one-eighth dose caused twice the change of the single one-eighth dose on the flag leaf, but was similar to a single spray on leaf 2.  相似文献   

9.
Tomato and strawberry are the most important protected crops in Lebanon and are seriously affected by grey mould disease, caused by Botrytis cinerea. In the present study, the fungicide sensitivity assays revealed medium to high frequencies of B. cinerea isolates resistant to benzimidazoles, dicarboximides, and anilinopyrimidines on tomato and strawberry. Fludioxonil- and boscalid-resistant mutants were uncommonly found at generally low frequency on both crops. Resistance to fenhexamid was detected in only one site on tomato but in most sites on strawberry with high frequencies, and the occurrence of resistance to QoI fungicides was ascertained on both crops. The majority of the tested isolates (>90%) exhibited multiple fungicide resistance, and isolates resistant to the seven antibotrydial fungicide classes were detected on strawberry in three locations. A high level of resistance was shown by B. cinerea mutants resistant to boscalid, fenhexamid, and QoI fungicides, while two levels of moderate and high resistance to anilinopyrimidines were identified. Genetic analysis revealed point mutations in the target genes commonly associated with resistance in B. cinerea isolates, with all mutants resistant to dicarboximides, fenhexamid, boscalid, and QoI fungicides carrying single-nucleotide polymorphims in BcOS1 (I365S/N, Q369P, and N373S), Erg27 (F412V/I), SdhB (H272R/Y), and cytb (G143A) genes, respectively. The general incorrect use of fungicides has caused the development and spread of fungicide resistance as a widespread phenomenon on protected tomato and strawberry in Lebanon. The implementation of appropriate antiresistance strategies is highly recommended.  相似文献   

10.
Failure to control Bremia lactucae (lettuce downy mildew) with metalaxyl in an intensive lettuce-producing region of Lancashire at the end of 1983 was shown to be due to the occurrence of a high level of resistance to this fungicide (isolates capable of growth at < 100 μg/ml metalaxyl). During most of 1984, metalaxyl-resistant isolates were obtained from numerous sites but all within a 20-km radius of the initial outbreak. Thereafter, at the end of 1984 and during 1985, metalaxyl-resistant isolates were recovered from most major lettuce-producing regions in the UK with protected crops more affected than field crops. AH metalaxyl-resistant isolates tested were identical in their response to fungicide, sexual compatibility type (B2) and virulence phenotype, probably representing a clone from a single origin. The resistant pathotype was virulent on resistance factors R 1-10 and 12-15 but lacked virulence for R 11 and 16-18. This was also the most common virulence phenotype among sensitive isolates collected at the same time. Cross-resistance to other phenylamide fungicides was demonstrated but isolates resistant and sensitive to phenylamide showed a similar response to the unrelated systemic fungicides propamocarb and fosetyl-Al. An F1 sexual progeny isolate from a cross between a phenylamide-sensitive and a phenylamide-resistant isolate (presumed heterozygous at the locus or loci regulating response to phenylamide fungicides) exhibited an intermediate response to phenylamide fungicides. No isolates of this type were obtained from the field. At the high concentrations affecting spore germination, phenylamide fungicides exhibited lower activity against a resistant isolate compared with a sensitive isolate. The findings are discussed in relation to future control strategies, the population biology of the fungus and possible directions for lettuce breeding programmes.  相似文献   

11.
BACKGROUND: The increasing occurrence of QoI fungicide resistance in Plasmopara viticola (Berk. & MA Curtis) Berl. & DeToni populations is becoming a serious problem in the control of grapevine downy mildew. In Japan, the existence of QoI‐fungicide‐resistant P. viticola was reported in 2009. RESULTS: The QoI fungicide resistance in P. viticola samples collected from vineyards in Japan in 2008 and 2009 was monitored. Resistant P. viticola were detected in the regions where QoI fungicides have been introduced in accordance with the pest management programme, whereas in Hokkaido vineyards, where QoI fungicides have not yet been introduced, QoI‐fungicide‐resistant P. viticola were not found. CONCLUSION: Japan comprises thousands of islands and is physically isolated from other countries by the sea. Monitoring the emergence, incidence and distribution of QoI fungicide resistance in P. viticola populations in Japan is necessary to improve pest management strategies for downy mildew disease in Japanese vineyards. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
植物病原菌抗药性及其抗性治理策略   总被引:1,自引:0,他引:1  
随着现代高活性的选择性杀菌剂的研发和广泛使用,病原菌的抗药性问题日趋严重,这已成为植物病害化学保护领域最受关注的问题之一。本文阐释了抗药性相关术语的定义,概述了病原菌的抗药性现状,并从自然选择和诱导突变两种学说的角度分析了抗药性产生的原因。进一步分析了抗药性群体流行与病原菌自身特点、杀菌剂类型和作用机制等影响因子密切相关,综述了抗药性风险评估、抗药性机制、抗药性进化以及抗药性常规和分子检测方法等内容。最后,提出了抗药性治理的目标和策略,即根据抗药病原群体形成的主要影响因素,针对性地设计抗药性治理短期和长期策略,特别是需进一步加强对新药剂和新防治对象开展抗药性风险评估、制定抗药性管理策略、建立再评价机制等。综上,明确植物病原菌抗药性发生发展特点并制定科学合理的抗性治理策略,对进一步开展植物病害的科学防控具有重要的参考价值。  相似文献   

13.
为了解决小麦赤霉病菌抗药性以及明确杀菌剂复配增效作用,采用菌丝生长速率法、孢子萌发法、渗透压测定、甾醇含量测定等方法研究了多菌灵与戊唑醇复配对赤霉病菌抗药性菌株Nj-1-1的活性增效作用。研究表明:复配药剂虽不能完全抑制孢子萌发及菌丝生长,但可以减慢孢子萌发速率,同时破坏抗性菌株细胞膜的渗透性及内含物,从而初步解释多菌灵与戊唑醇复配组合的增效原因。  相似文献   

14.
Two bioassay methods are described which use detached tobacco leaves to measure the sensitivity of Peronospora tabacina to systemic fungicides. Tobacco leaves (13–15 cm2), treated with fungicides before or after detachment from the plant, were inoculated with sporangia in water drops and, after incubation in beakers and Petri plates, the disease severity and/or production of sporangia was determined 4–7 days after treatment with the fungicides. Of 15 systemic fungicides applied to detached leaves, eight N-phenylamides at 0.066?1.0 μg ml?1 controlled blue mould; metalaxyl was the most effective fungicide. Isolates of P. tabacina, collected in the field from tobacco plants grown in soil treated with metalaxyl, were not resistant to the fungicide applied to detached leaves prior to inoculation. The fungicide, applied to leaves before detachment, was used to measure the efficacy of five systemic N-phenylamide fungicides sprayed on the basal and unsprayed distal portions of the leaves. Blue mould was controlled on the basal portion of the leaf by all the fungicides at 0.66?1.0 μg ml?1, but it required the application of 3–30 times more chemical on the basal portion to achieve comparable blue mould control on the distal part of the leaf.  相似文献   

15.
The benzimidazole fungicides thiabendazole and carbendazim, and the imidazole fungicide prochloraz-Mn, were tested for their efficacy in controlling cobweb disease of mushrooms caused by two Cladobotryum isolates. Isolate 202A was benzimidazole-sensitive in vitro and cobweb growth on the casing was well controlled by both benzimidazole fungicides in cropping experiments. Carbendazim also controlled the development of spotting symptoms much more effectively than thiabendazole. A second isolate (192B1) was benzimidazole-resistant and was highly resistant to thiabendazole in vitro but it showed some sensitivity to carbendazim in vitro at moderate to high concentrations. Despite this, carbendazim did not control disease symptoms in cropping experiments, confirming that isolate 192B1 is cross-resistant to other benzimidazole fungicides. Both isolates showed some sensitivity to prochloraz-Mn in vitro. This fungicide gave between 45% and 65% control of cobweb growth on the casing caused by either 202A or 192B1 but gave no control of spotting symptoms. Reducing the fungicide application volume did not give enhanced disease control. The emergence of benzimidazole resistance reduces the value of benzimidazoles in the control of mushroom pathogens. However, the lack of effective alternatives means they continue to have utility in cases where pathogens are still sensitive but this requires regular monitoring of pathogen populations for resistance.  相似文献   

16.
Downy mildew ( Pseudoperonospora cubensis ) is one of the most harmful diseases of cucumber in Ukraine. At high disease severity, the growing season is considerably shortened and yield is reduced. The most effective method of control is the development of resistant cultivars but, in the absence of absolutely resistant forms, control with fungicides remains very important. The effectiveness of such treatment depends on the dates of application, the number of sprays and the efficacy of the fungicides used. An improved scheme is presented, based on three components: use of cultivars with increased resistance; application of highly effective systemic + contact fungicides; and reliable short-term forecasting of disease appearance. The predictors for downy mildew forecasting are: sum of effective temperatures, weather index, duration of leaf wetness, concentration of sporangia in air and latent period of disease development. These conditions determine'critical days'for disease development. The first fungicide spray on less susceptible cultivars is recommended on the first critical day, and the next on the day of appearance of first disease symptoms. This scheme allows the fungicide load to be approximately halved, while ensuring higher yield.  相似文献   

17.
The influences of alternated or combined fungicide treatments on the development of fungicide resistance in pathogens were compared. Mathematical deduction indicated the importance of the decreasing activity of the spray residue in the periods between two treatments. It is suggested that with similar fungicide protection, resistance will usually develop more slowly with combined than with alternated treatments in the case of fast-growing pathogens, and also when shortlived fungicides are applied in a poor spray cover. In other circumstances both methods of treatment proved to be equally effective in the prevention of resistance.  相似文献   

18.
Diastereomers of triazole-type fungicides behaved differently with respect to their fungitoxicity towards wild-type strains of Cladosporium cucumerinum and strains resistant to ergosterol biosynthesis inhibitors. With increasing resistance to the fungicide ‘as a whole’, the difference in resistance to the two diastereomers of triadimenol became progressively smaller, whereas for the other triazole derivatives, this difference became progressively larger. The possible consequences of such phenomena for the practical use of diastereomeric fungicides are discussed.  相似文献   

19.
Highly significant genetic variation (P<0.001) in resistance to the morpholine fungicides fenpropimorph, tridemorph and dodemorph and the piperidine fungicide, fenpropidin was found in different populations ofPyrenophore teres in North America and Europe which had not been previously exposed to these fungicides. Resistance phenotypes were continuously distributed for each fungicide in each population. Cross resistance relationships were determined by estimating genetic correlation coefficients in resistance to all pairwise combinations of fungicides. The majority of the correlation coefficients were highly positive for all fungicide combinations in all populations; eight of 36 (22%) coefficients were not significantly different from 1 (P>0.05). This result is consistent with the hypothesis that many of the same genes, or genes in gametic disequilibrium, control resistance to more than one fungicide in most populations ofP. teres and that these fungicides comprise a single cross resistance group. Three of 36 (8%) correlation coefficients were not significantly different from 0 (P>0.05) indicating that, in these populations, independent genes controlled resistance to these fungicides. The results of this study indicate that although most of the same genes control resistance to morpholine and piperidine fungicides inP. teres, differences in frequencies of these genes among populations can result in different cross resistance relationships from one population to another.  相似文献   

20.
Fusarium verticillioides reduces corn yield and contaminates infected kernels with the toxin fumonisin, which is harmful to humans and animals. Previous research has demonstrated that F. verticillioides can be controlled by the azole fungicide prochloraz. Currently, prochloraz is used as a foliar spray to control maize disease in China, which will increase the risk of resistance. Although F. verticillioides resistance to prochloraz has not been reported in the field, possible resistance risk and mechanisms resulting in prochloraz resistance were explored in the laboratory. Four prochloraz‐resistant strains of F. verticillioides were generated by successive selection on fungicide‐amended media. The mycelial growth rates of the mutants were inversely related to the level of resistance. All four mutants were cross‐resistant to the triazole fungicides triadimefon, tebuconazole and difenoconazole, but not to the multisite fungicide chlorothalonil or to the MAP/histidine‐kinase inhibitor fungicide fludioxonil. Based on the Y123H mutation in FvCYP51B, the four resistant mutants were subdivided into two genotypes: PCZ‐R1 mutants with wildtype FvCYP51B and PCZ‐R2 mutants with substitution Y123H in FvCYP51B. Wildtype FvCYP51B complemented the function of native ScCYP51 in Saccharomyces cerevisiae YUG37::erg11, whereas Y123H‐mutated FvCYP51B did not. For the PCZ‐R1 mutants, induced expression of FvCYP51A increased resistance to prochloraz. For the PCZ‐R2 mutants, disruption of FvCYP51B function by the Y123H substitution caused constitutive up‐regulation of FvCYP51A expression and thus resistance to prochloraz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号