首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

2.
One serotype of bluetongue virus (BTV) and two serotypes of epizootic hemorrhagic disease virus (EHDV) were isolated from vertebrate and invertebrate hosts on a farm in Colorado. The isolations were from blood samples collected a week apart from a dairy heifer with stomatitis and laminitis; EHDV serotypes 1 and 2 were isolated from the first blood sample, and BTV serotype 13 and EHDV serotype 1 were isolated from the second. Antibodies to EHDV and BTV were detected in the serum from this heifer. Both EHDV serotypes and BTV serotype 13 were isolated from pools of female biting gnats (Culicoides variipennis) that had not had a recent blood meal. The BTV insect isolate was biologically transmitted by female gnats from an infected donor sheep to a recipient host sheep. Culicoides variipennis was the predominant insect collected during three nights of light trap captures at the farm.  相似文献   

3.
This paper records the results of a bluetongue virus (BTV) serological survey and reports the first isolation of BTV on the French Island of Reunion. In January 2003, the French Island of Reunion, located off the coast of Madagascar, reported an outbreak of disease in cattle that resembled clinical bluetongue (BT) in sheep. The suspected causal agent was isolated and identified as epizootic haemorrhagic disease of deer virus (EHDV). However, because of the similarity in the clinical signs to those of BT, a retrospective survey against BTV was carried out using sera collected in 2002. Results revealed the presence of antibody in all sera tested indicating that BTV has been resident on the Island since 2002, and probably earlier. Although up to July 2003 no clinical BT had ever been reported in sheep, BTV viral RNA was amplified by RT-PCR from a single sheep blood collected in February that year, which strongly suggested that BTV was currently circulating on the Island. Following a second outbreak of disease in August 2003, this time involving a flock of Merino sheep, infectious BTV was finally isolated, and identified by both traditional and molecular techniques as serotype 3. The nucleotide and amino-acid sequences of the RT-PCR products amplified for BTV segments 7 and 10 from the sheep blood collected in February and August from different areas of the Island, were sufficiently diverse as to suggest that they were of different origins and/or different BTV serotypes.  相似文献   

4.
Thirty-two bovine field isolates of bluetongue virus (BTV), 6 field isolates of epizootic hemorrhagic disease virus (EHDV) from deer, 4 BTV prototype serotypes (10, 11, 13, and 17), and 2 EHDV prototype serotypes (1 and 2) were coelectrophoresed, using polyacrylamide gels. Field isolates were obtained from various regions of the United States. Analysis of polyacrylamide gels and scattered plots generated for comparison of migration patterns for different isolates within each serotype of BTV revealed wide variation among the individual segments. The BTV serotypes 10 and 11 had more variation, compared with BTV serotypes 13 and 17, especially for migration of genome segment 5. A definitive correlation was not seen between the double-stranded RNA migration profiles on polyacrylamide gel electrophoresis, geographic origin, herd of origin, or year of collection. One BTV field isolate contained more than 1 electropherotype, with 2 bands at the segment-7 position, and it was further characterized as BTV serotype 11. Segments 2 and 5 of EHDV isolates were more variable in their migration than were the other gene segments. Generally, migration profiles for EHDV double-stranded RNA were more variable, compared with those of BTV isolates. Although a correlation was found between migration profiles and serotype of 2 isolates of EHDV, a study of additional EHDV isolates is required before the diversity of electrophoretic patterns of EHDV can be determined.  相似文献   

5.
A virus was isolated from the spleen of a white-tailed deer (Odocoileus virginianus) that had died during an epizootic in Washington state in 1967. Inoculation of a 10% spleen suspension from the deer caused hemorrhagic disease in normal white-tailed deer. Studies were conducted on the biological, physicochemical, and serologic properties of the Washington isolate. An in vitro assay system, utilizing a cultured primary of white-tailed deer fetal cells from an entire fetus, was employed for isolation and propagation of the virus. Cytopathic effect was characterized by focal development of rounded and clumped cells. Propagation was unsuccessful in suckling mice, BHK-21, and Vero cell cultures. The virus was resistant to treatment with ether, sodium deoxycholate, trypsin, oxytetracycline hydrochloride, and was sensitive to chloroform. Virus yield was not affected when infected cultures were treated with 5-iodo-2'-deoxyuridine, but dactinomycin (actinomycin D) treatment of infected cultures reduced virus yield. The virus was inactivated when heated at 70 C for 5 minutes or when exposed to pH 5 for 18 hours at 4 C. The virus was completely excluded from the filtrate by a 0.10- micronm (APD) membrane filter. Staining of infected cells with acridine orange indicated the presence of double-standard nucleic acid in the cytoplasm. Serum-neutralization tests with antiserums against the homologous virus and the New Jersey and Alberta strains of epizootic hemorrhagic disease virus resulted in neutralization of the Washington isolate. The Washington virus was not neutralized by bluetongue virus antiserum. Cells infected with the Washington isolate exhibited intracytoplasmic fluorescence by the indirect fluorescent antibody method with New Jersey and Alberta epizootic hemorrhagic disease antiserums but not with bluetongue antiserum.  相似文献   

6.
Ibaraki virus, which causes a bluetongue-like disease of cattle in Japan, was compared antigenically with the four serotypes of bluetongue virus (BTV) found in the U.S. and with the two serotypes of epizootic hemorrhagic disease virus (EHDV). No antigenic relationship was found between Ibaraki virus and BTV serotypes 10, 11, 13, and 17 in tests for group or serotype-specific antigens. However, Ibaraki virus and EHDV were related antigenically. The agar gel precipitin and indirect fluorescent antibody tests for group antigens showed two-way cross relationships between Ibaraki virus and EHDV serotypes 1 and 2. The more restrictive serotype-specific neutralization test revealed that antigenic relatedness was stronger between Ibaraki virus and the serotype 2 (Alberta strain) of EHDV than between Ibaraki virus and the serotype 1 (New Jersey strain) of EHDV.  相似文献   

7.
Red deer (Cervus elaphus) is a widespread and abundant species susceptible to bluetongue virus (BTV) infection. Inclusion of red deer vaccination among BTV control measures should be considered. Four out of twelve BTV antibody negative deer were vaccinated against serotype 1 (BTV-1), and four against serotype 8 (BTV-8). The remaining four deer acted as unvaccinated controls. Forty-two days after vaccination (dpv), all deer were inoculated with a low cell passage of the corresponding BTV strains. Serological and virological responses were analyzed from vaccination until 28 days after inoculation (dpi). The vaccinated deer reached statistically significant (P<0.05) higher specific antibody levels than the non vaccinated deer from 34 (BTV-8) and 42 (BTV-1) dpv, maintaining stable neutralizing antibodies until 28 dpi. The non vaccinated deer remained seronegative until challenge, showing neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of the non vaccinated deer from 2 to 28 dpi, whereas no BTV RNA was found in the vaccinated deer. BTV was isolated from the blood of non vaccinated deer from 7 to 28 dpi (BTV-1) and from 9 to 11 dpi (BTV-8). BTV RNA could be identified by RT-PCR at 28 dpi in spleen and lymph nodes, but BTV could not be isolated from these samples. BT-compatible clinical signs were inapparent and no gross lesions were found at necropsy. The results obtained in the present study confirm that monovalent BTV-1 and BTV-8 vaccines are safe and effective to prevent BTV infection in red deer. This finding indicates that vaccination programs on farmed or translocated red deer could be a useful tool to control BTV.  相似文献   

8.
The frequencies of precipitating antibodies to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in domestic ruminants and white-tailed deer (WTD) in Georgia were 36% and 32%, respectively (n = 2,200). The frequencies of seropositivity to BTV and EHDV were high among cattle (47% and 42%, respectively [n = 1,068]) and less so in WTD (36% and 34% [n = 414]). The frequencies among sheep were 34% for BTV and 29% for EHDV (n = 286), whereas among goats, seropositivity was 8% for BTV and 7% for EHDV (n = 433). Serum samples from northeastern Georgia (1 of the 4 regions in the survey) had the highest frequency of precipitating antibodies for BTV (45%) and EHDV (38%). The lowest frequency was in southeastern Georgia, with 29% seropositivity for BTV and 24% seropositivity for EHDV. Of the 175 farms or herds in the serosurvey, 70% included animals that had BTV-precipitating antibodies, and 67% included animals which had EHDV-precipitating antibodies. Seventeen viral isolates were obtained from individual animals on 9 different farms. Fifteen of the isolates were BTV--8 from cattle, 4 from sheep, and 3 from WTD; 8 of them were serotype 11, and 7 were serotype 17. Viral isolates from each of 2 WTD were identified as EHDV serotype 1 and serotype 2. Of the total 17 isolates, 11 were from clinically healthy ruminants, and 6 were from animals with clinical signs of BT or EHD. Five of the viral isolates originated from northeastern Georgia, 7 from the northwestern region, and 5 from the southwestern region; none was obtained from specimens from the southeastern region.  相似文献   

9.
The diagnostic potential of RT-PCR for detection of bluetongue virus (BTV) ribonucleic acid (RNA) sequence in cell culture and tissue samples from infected ruminants from United States, Sudan, South Africa and Senegal, was evaluated. The non structural protein 1 (NS1) gene of North American BTV serotype 11 was targeted for PCR amplification. The United States BTV serotypes 2, 10, 11, 13 and 17 and the Sudanese BTV serotypes 1, 2, 4 and 16 and BTV serotype 4 from South Africa and BTV serotype 2 from Senegal were studied. RNAs from all BTV field isolates used in this study, propagated in cell cultures, were detected by the described RT-PCR-based assay. The first specific 790bp BTV PCR products were amplified using a pair of outer primers (BTV1 and BTV2). Specificity of the PCR products was confirmed by a nested amplification of a 520bp PCR product using a pair of internal (nested) primers (BTV3 and BTV4). The BTV PCR products were visualized on ethidium bromide-stained agarose gels. Amplification products were not detected when the RT-PCR-based assay was applied to RNAs from closely related orbiviruses including, epizootic hemorrhagic disease virus (EHDV) prototypes serotypes 1, 2, 4; RNA from Sudanese isolate of palyam orbiviruses serogroup and total nucleic acid extracts from uninfected Vero cells. Application of the nested BTV RT-PCR to clinical samples resulted in amplification of BTV RNA from blood and serum samples from goats experimentally infected with BTV4 and from naturally infected sheep, goats, cattle and deer. The results of this study indicated that this RT-PCR assay could be applied for rapid detection of BTV, in cell culture and clinical samples from susceptible ruminants during an outbreak of the disease, in the United States and African.  相似文献   

10.
Genome segment 10 of bluetongue virus (BTV) serotype 11 UC8 strain was cloned and subsequently hybridized to viral double-stranded RNA extracted from 90 field isolates of BTV serotypes 10, 11, 13, and 17; the prototype strains of BTV 2, 10, 11, 13, and 17; the prototype strain epizootic hemorrhagic disease virus (EHDV) serotype 1; and 4 field isolates of EHDV serotype 2. The 90 field isolates were obtained from different counties in California, Louisiana, and Idaho during the years 1979, 1980, and 1981. The cloned genetic probe hybridized with all the BTV samples tested, showing different degrees of cross-hybridization at the stringency conditions used in this study. This indicated that BTV genome segment 10 has conserved nucleotide sequences among the BTV serotypes 2, 10, 11, 13, and 17. No cross-hybridization signals were detected between the cloned genome segment 10 of BTV 11 UC8 strain and the prototype strain of EHDV serotype 1 and the field isolates of serotype 2. This probe recognized a wide variety of BTV isolates.  相似文献   

11.
An indirect enzyme-linked immunosorbent assay (I-ELISA) is described for simultaneous screening of bovine sera for detection of antibodies to bluetongue (BT) and epizootic hemorrhagic disease of deer (EHD) viruses (V). Optimal dilutions of BTV and EHDV antigens were combined and allowed to absorb on to the wells of microtiter plates. Appropriately diluted (1:100) bovine sera were allowed to incubate and the bound antibodies were detected by a murine monoclonal antibody (MAb) to bovine immunoglobulin (H-Chain) conjugated with horseradish peroxidase. The performance of the combined (C) I-ELISA in detecting antibodies to BTV and EHDV in sequential serum samples from calves experimentally inoculated with BTV, serotype 10, EHDV, serotype 1 (New Jersey) or EHDV serotype 2 (Alberta) was evaluated. Comparable antibody profiles were demonstrable by the CI-ELISA and separate I-ELISAs using either BTV or EHDV antigens. The results suggest that the CI-ELISA offers many advantages over the standard agar gel immunodiffusion (AGID) test and has potential application as a rapid, sensitive, inter-group-specific and inexpensive test for simultaneous screening of bovine sera for antibodies to BTV and/or EHDV.  相似文献   

12.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immunodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconverted as assessed by results of the BTV IDT. In the 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no cattle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.  相似文献   

13.
Epizootic hemorrhagic disease virus (EHDV) was isolated in Vero cell culture from the spleen and whole blood of a white-tailed deer (Odocoileus virginianus). A 10% spleen suspension caused acute hemorrhagic disease (HD) when inoculated into an experimental white-tailed deer and resulted in the recovery of EHDV from the blood of the experimental animal at 5 days after inoculation. The virus was identified as EHDV serotype 2 through indirect fluorescent antibody tests, electron microscopy, and reciprocal cross-neutralization tests. Approximately 73% (36/49) of the mule deer, 5% (2/42) of the white-tailed deer, and 79% (249/314) of the cattle samples tested from areas where HD had been reported were EHDV seropositive. Although none of the white-tailed deer was bluetongue virus seropositive, 29% of the mule deer and 3% of the cattle tested from "active" HD areas possessed bluetongue virus precipitating antibody.  相似文献   

14.
The performance of 2 competitive enzyme-linked immunosorbent assays (C-ELISA) was compared with the reference C-ELISA I for the detection of antibodies to bluetongue virus (BTV). One of the assays (C-ELISA II) used a group-specific monoclonal antibody (MAb) to BTV, obtained from the American Type Culture Collection (8A3B-6) and tissue culture (TC)-derived BTV antigen (Ag), and the other assay (C-ELISA III) used BTV core protein VP7 (expressed in yeast) and the reference MAb (Pirbright Laboratory, 3-17-A3). Test sera were obtained by sequential blood samples from 22 calves, each inoculated with a different serotype (T) of BTV (South African [SA] T-1-T-16 and T-18-T-20 and USA T-11, T-13, and T-17). Sera were also obtained from 4 calves and 4 sheep inoculated with USA BTV T-10 and from several groups of calves exposed to single or multiple doses of epizootic hemorrhagic disease virus (EHDV) T-1-T-4 grown in TC (BHK-21) or suckling mouse brain (SMB). A total of 618 bovine and ovine field sera collected from BT-free and BT-endemic areas were also tested. The C-ELISA III was more sensitive than the C-ELISA II in the detection of anti-BTV antibody in sera from cattle and sheep early after infection with BTV. Seroconversion was demonstrated by the 3 C-ELISAs in all animals inoculated with BTV by 20 days postinfection (DPI), except in calves that received SA T-3 or USA T-13, which became positive at 40 DPI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
OBJECTIVE: To determine whether experimental inoculation with a field strain of epizootic hemorrhagic disease virus serotype-2 (EHDV-2) suspected of causing clinical disease in naturally infected cattle would cause clinical disease in calves. ANIMALS: 8 calves. PROCEDURE: A strain of EHDV-2 isolated from a white-tailed deer that died of hemorrhagic disease was passaged twice in deer and used to inoculate 6 calves SC and ID; the other 2 calves were used as controls. Physical examinations, CBC, lymphocyte blastogenesis assays, and coagulation assays were performed; rectal temperature, interferon production, and serum neutralizing antibody responses were measured; and virus isolation was attempted every other day for 21 days after inoculation and then every fourth day for another 30 days. Calves were euthanatized on postinoculation day 51, and necropsy was performed. RESULTS: Calves inoculated with EHDV-2 became infected, as evidenced by development of viremia and seroconversion. However, the virus did not cause detectable clinical disease, clinicopathologic abnormalities, or gross lesions. Viremia was prolonged despite development of a serum neutralizing antibody response. A white-tailed deer inoculated with the same EHDV-2 strain developed clinical signs of epizootic hemorrhagic disease, demonstrating that the inoculum was virulent. CONCLUSION: Calves experimentally infected with EHDV-2 developed viremia and seroconverted but did not develop detectable clinical disease.  相似文献   

16.
Immunisation of mice with recombinant VP7 antigen of epizootic hemorrhagic disease virus of deer (EHDV) induced serum antibody responses to EHDV. However, from the 19 monoclonal antibodies (Mab) produced from these mice, 15 were specific for EHDV and four for bluetongue virus (BTV). No Mabs were identified with the specificity for an epitope of VP7 shared by both EHDV and BTV in spite of the fact that they share a large portion of homology in VP7 amino acids composition. These Mabs were divided into five groups based on their specificity and interaction with each other. Group II Mabs, consisting of 13 Mabs, recognises a potential serogroup specific, linear epitope of EHDV VP7 antigen. One of the Mabs to BTV (Group V) was identified as BTV VP7 specific with the possibility of being the serogroup specific and recognizes a potential conformational epitope. Two Mabs from these VP7 specific groups were further analysed and found to be useful in a competitive enzyme-linked immunosorbent assay (C - ELISA) for detection of specific antibodies against EHDV and BTV in bovine sera.  相似文献   

17.
Intramuscular or intravenous inoculation of 5 Columbia black-tailed deer (Odocoileus hemionus columbianus) with virus of epizootic hemorrhagic deer disease (EHD) did not produce overt clinical disease. Two white-tailed deer (Odocoileus virginianus) exposed identically died in 5 to 6 days. There were no significant lesions in 1 black-tailed deer euthanatized on postinoculation day 5. The EHd virus was not isolated from the spleen of that deer. Seroconversion occurred in black-tailed deer, from zero EHD virus antibody titer before inoculation to titers of 1:128 to 1:256 after inoculation.  相似文献   

18.
为建立鹿流行性出血病病毒(EHDV)病原学检测方法,用纯化的抗EHDV特异性单克隆抗体包被ELISA板,用兔抗EHDV IgG作为夹心抗体,IgG作为夹心抗体建立EHDV双抗夹心ELISA方法,并对该方法的特异性和敏感性进行了试验.用ELISA分别检测EHDV、蓝舌病病毒(BTV)、水疱性口炎病毒(VSV)、赤羽病病毒...  相似文献   

19.
A hemolysis-in-gel (HIG) test was developed to detect and quantitate antibody to bluetongue virus (BTV). The HIG test was sensitive and accurate when applied to sera from sheep and cattle infected with BTV. Sensitized sheep RBC were prepared by adsorption of partly purified BTV to the cells. Regression analysis of data showed a linear relationship between the diameter of the hemolytic zone and the log of the antibody concentration. The HIG test did not differentiate among antiodies to four serotypes of BTV, but did differentiate between antibody of BTV and antibody to epizootic hemorrhagic disease virus.  相似文献   

20.
In a diagnostic survey of diseases in wild white-tailed deer (62 cases) and mule deer (12 cases) the most common findings were traumatic injury (20%), nontraumatic hemorrhage (13%), polioencephalomalacia (11%), and bacterial infections (9%). Although epizootic hemorrhagic disease was suspected in several cases, the virus was isolated from only 1 white-tailed deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号