首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal patterns of microarthropod abundance in surface leaf litter were related to its moisture content. Leaf litter moisture was nearly 7% by weight at 0800h but fell to less than 1% by mid-day. Oribatid and tydeid mites moved into litter in the early morning and back into the soil before mid-day. There were no significant differences in numbers of nematodes in litter or soil and 78–98% of the nematodes were anhydrobiotic (coiled) in soil and litter at all times sampled.Following simulated rainfall there were fewer microarthropods in litter at mid-day in the absence of marked decreases in soil and litter moisture content. During drying, there were gradual reductions in numbers and species diversity of litter microarthropods. Nematode numbers did not change as litter dried. Anhydrobiotic nematodes in the soil increased from 14% on day 1 to 85% on day 4. Between 24 and 36 h after simulated rainfall, the proportion of anhydrobiotic litter nematodes increased from 35 to 80%,.Within 1 h after simulated rainfall, there were marked increases in numbers and diversity of microarthropods in surface litter. No collembolans were extracted from dry litter controls but the wet litter was dominated by isotomid, sminthurid and onychiurid collembolans. There were increases in numbers and diversity of oribatid, tydeid and gamasid mites in the wet surface litter within l h after wetting compared to controls.  相似文献   

2.
Despite the ubiquity of oribatid mites in soil and litter systems, and their importance in decomposition and nutrient cycling processes, little is known of the factors underlying the composition of their assemblages. Our objective was to address this by determining how oribatid assemblage composition changes by forest stand type. This work was done in and near a hardwood forest in southwestern Quebec, Canada. We sampled mites by collecting 1 L of litter and 170 cm3 of soil from four sites in each of four distinct habitat types: American beech stands, sugar maple stands, mixed deciduous stands and mixed conifer plantations. Samples were collected in July and September 2005, and June 2006, and over 6500 oribatid mites were collected and identified to species. Abundance and species richness differed between forest types: for abundance conifer>beech>maple>mixed deciduous while for species richness beech and conifer>maple>mixed deciduous. Ordination analyses revealed that conifer plantations and beech stands supported distinct assemblages, while there were some overlap in the assemblages found in maple stands and mixed deciduous stands. These data support the importance of aboveground plant communities in affecting the composition of oribatid assemblages even at local scales and provide insight into additional impacts that may be caused by shifts in plant species ranges due to global changes.  相似文献   

3.
Oribatid mites are important colonizers of young soils, but little is known about their immigration pathways. In this study, one often-stated hypothesis was tested quantitatively: that wind is an important dispersal pathway. The aim was (1) to detect wind dispersal in oribatid mites (using sticky traps at different heights above ground level) and to determine factors influencing wind dispersal, (2) to investigate whether oribatids can survive wind dispersal and immigrate by wind into young soils (using mini-pitfall traps in test plots with oribatid-free substrate, active immigration being prohibited) and (3) to find out whether those oribatids are able to colonize young soils (using soil cores from the test plots). The results demonstrate (1) that mainly arboreal oribatid species were dispersed by wind - even at 160 m height - and can therefore be spread over large distances. Nevertheless, about 10% of the wind-dispersed oribatid mites belonged to species able to live in the soil and may therefore be potential colonizers of young soils. The number of specimen and species transported by wind was the highest close to the soil surface and the number of dispersed individuals was mainly influenced by seasonality and humidity. The results also suggest that the probability of a soil oribatid being dispersed by wind depends on its original microhabitat (tree habitats > soil surface > deeper soil layers) and its body weight. It was also shown that soil-dwelling oribatid mites survived wind dispersal and immigrated by wind into the test plots and that colonization of the test plots took at least 2 months longer than immigration. However, colonization success was low during the first 2 years of investigation and only Trichoribates incisellus was found several times in the nutrient-poor substrate. Therefore, wind dispersal is an important migration pathway, especially for arboreal oribatids. We suggest that immigration into young soils most likely occurs by repeated short-distance dispersal. Only some species are able to survive the hostile conditions of wind dispersal as well as of pioneer soils, but those that do are potentially the founders of new populations.  相似文献   

4.
Insects killed by entomopathogenic nematodes (EPN) represent a resource with which soil arthropods can interact. These interactions can be positive for EPN (e.g., arthropods serve as parasitic or phoretic hosts) or negative (e.g., EPN serve as prey). Plant diversity and soil disturbance may influence these interactions. We investigated the effects of maize and flower strip habitats on microarthropod abundance and community composition in soil surrounding greater wax moth larvae, Galleria mellonella, infected with the EPN Steinernema carpocapsae (Sc). In the first year of the experiment (2005), we compared microarthropod communities responding to burial of Sc-killed insects with a control (no soil disturbance). In 2006, we added two control treatments: burial of freezer-killed insects and sham burial. Soil samples (including G. mellonella) were collected 2 and 20 days (2005) or 2 and 12 days (2006) after application. In 2005, arthropod abundance and community composition were similar between maize and flower strip habitats. In 2006, we detected more arthropods in the maize than the flower strips. In both years, community composition differed between treatments providing resources (Sc-killed and freezer-killed insects) and those without (sham burial and no disturbance), with the greatest difference on the final sampling date. Soil surrounding Sc-killed and freezer-killed insects contained more dipterans, acarid mites, staphylinid beetles, onychiurid and entomobryid collembolans, and immature and male mesostigmatid mites than soil at sham burial and no disturbance sites. Most of these taxa are capable of nematophagy; however, EPN relative abundance was not associated with arthropod community composition.  相似文献   

5.
Two key determinants of biological diversity that have been examined in aboveground and aquatic systems are productivity, or resource supply, and physical disturbance. In this study, we examined how these factors interact under field conditions to determine belowground diversity using microarthropods (mites and Collembola) as our test community. To do this, we established a field manipulation experiment consisting of crossed, continuous gradients of nitrogenous (N) fertilizer addition (up to 240 kg N ha?1) and disturbance (imitated trampling by cattle) to produce a gradient of soil nutrient availability and disturbance. Due to the relatively short-term nature of our study (i.e. 2 years), we only detected minimal changes in plant diversity due to the experimental manipulations; in the longer term we would expect to detect changes in plant diversity that could potentially impact on soil fauna. However, disturbance reduced, and additions of N increased, aboveground biomass, reflecting the potential effects of these manipulations on resource availability for soil fauna. We found that disturbance strongly reduced the abundance, diversity, and species richness of oribatid mites and Collembola, but had little effect on predatory mites (Mesostigmata). In contrast, N addition, and therefore resource availability, had little effect on microarthropod community structure, but did increase mesostigmatan mite richness and collembolan abundance at high levels of disturbance. Oribatid community structure was mostly influenced by disturbance, whereas collembolan and mesostigmatan diversity were responsive to N addition, suggesting bottom-up control. That maximal species richness of microarthropod groups overall occurred in undisturbed plots, suggests that the microarthropod community was negatively affected by disturbance. We found no change in microarthropod species richness with high N additions, where plant productivity was greatest, indicating that soil biotic communities are unlikely to be strongly regulated by competition. We conclude that the diversity of soil animals is best explained as a combination of their many varied life history tactics, phenology and the heterogeneity of soils that enable so many species to co-exist.  相似文献   

6.
We examined patterns of microarthropod abundance in oak-hickory (Quercus-Carya) forest ecosystems in southern Ohio (USA) in relation to landscape position and fire frequency. Abundances of various suborders of Acari and Collembola were determined in samples taken in June 1999 in three forested watersheds, one that had been burned annually for four consecutive springs (1996-1999), one that had been burned periodically (1996 and 1999), and an unburned control. Microarthropod abundance was significantly lower in the annually burned watershed than the periodically burned and control watersheds. Since both the periodically burned and annually burned watersheds were burned in April 1999, the lower microarthropod abundance in the annually burned watershed was not simply an immediate effect of burning. At the landscape scale, the abundance of oribatid mites was greater in xeric than intermediate or mesic landscape positions. Within any single watershed, there was no significant linear relationship between litter mass and microarthropod abundance. However, when all three watersheds were combined, there was a significant, positive relationship between litter mass and microarthropod abundance, mainly due to the annually burned watershed where there was very low litter mass and low microarthropod abundance. Both fire frequency and landscape position have significant effects on microarthropod abundance; however, those effects cannot be robustly predicted based solely on forest floor litter mass differences.  相似文献   

7.
The importance and strength of bottom-up forces in terrestrial soil systems are poorly understood. In contrast to aquatic systems, where trophic cascades and top-down forces dominate, it has been postulated that terrestrial systems are regulated mainly by bottom-up forces. We set up a 17 month field experiment to study the effects of addition of resources of different quality (wood, wheat bran, pet food, and glucose+phosphorous+nitrogen) on the soil micro-, meso- and macrofauna as well as on microbial biomass, ergosterol content and abiotic parameters (soil pH, water content, carbon and nitrogen content) in a beech forest (Fagus sylvatica) on sandstone. We hypothesized that bottom-up effects will be strong on lower trophic levels resulting in increased biomass of bacteria and fungi, and that this increase will propagate to higher trophic levels (microbivorous invertebrates, predators) but with decreasing intensity due to dampening of bottom-up forces at higher trophic levels by high connectivity, trophic-level-omnivory and generalist feeding. The results of the study in general did not support these hypotheses. Microbial biomass only moderately increased after resource addition, and while densities of several animal groups increased (lumbricids, nematodes, collembolans, gamasid mites, staphylinid beetles), densities of other groups declined (oribatid mites, prostigmate mites, lithobiids), and a large number of taxa remained unaffected (enchytraeids, diplopods, uropodine mites, pseudoscorpions, spiders). We conclude that (a) bottom-up forces are of limited importance in the soil system of temperate deciduous forests, (b) large primary decomposers, such as earthworms, do not depend on microorganisms as food but consume organic matter directly, (c) the link between microorganisms and microbivores, such as collembolans, is weak since collembolan density increased even though microbial biomass was unaffected, (d) habitat modification by ecosystem engineers, such as earthworms, is more important than resource availability for a number of soil invetebrates including prostigmate mites and centipedes, and (e) the soil food web in general is rather resistant responding little to changes in resource supply. The results also suggest that species which commonly are assigned to single trophic groups, such as collembolans, differently respond to changes of the base of the food web. Increased fungal biomass led to an increase in the density of Folsomia quadrioculata s.l. and Isotomiella minor, whereas the increased bacterial biomass was accompanied by an increase in density of Ceratophysella denticulata and Isotoma notabilis.  相似文献   

8.
Differences in tree species may lead to contrasting soil environments via differences in litter chemical quality and physical environmental factors, such as soil type and soil moisture. However, separating the effects of litter quality and physical environment is difficult under field conditions. Both litter quality and soil environment affect the species composition of the soil animal community. A diversity gradient of canopy tree species (11–25 species) located on homogeneous soil substrate at Tomakomai Experimental Forest of Hokkaido University was used to analyse the relationship between tree species diversity and oribatid mite community structure. Soil samples were collected from three levels of tree species richness (high, intermediate and low) with three replicates each, in July 2000. Leaf area index (LAI) was positively correlated with tree species diversity suggesting higher litter input into the soils with increasing tree diversity. However, the tree species diversity gradient affected neither accumulation of litter on the forest floor nor abundance and species richness of oribatid mites. Canopy and understory plant species richness, LAI, total soil carbon and biomass of epigeic and endogeic earthworms did not significantly affect mite community structure as indicated by redundancy analysis (RDA). The results suggest that oribatid mite community structure is minimally affected by tree species diversity and associated changes in litter diversity.  相似文献   

9.
Relationships between anecic earthworms (Lumbricus terrestris and Aporrectodea giardi) and the collembolan species Heteromurus nitidus (Templeton, 1835), which is known to be attracted to earthworms, were investigated in an 8-week laboratory experiment. Our aims were (1) to assess whether earthworms influence the population dynamics of H. nitidus, and (2) to study pathways of influence and how earthworm effects are modified by humus forms and predators. Using microcosms with three defaunated humus forms, then provided with earthworms and predators, we intended to demonstrate that, amongst possible favourable effects of earthworms on springtail populations, earthworm activity may provide greater access and more pathways for springtails to explore soil and avoid predation. We expected that the effects of predators (centipedes) on the abundance of H. nitidus would increase from less (calcic mull) to more (moder) compact soil, and we hypothesized that earthworms would reduce predation pressure on H. nitidus by providing escape routes through increased macroporosity. Humus forms and earthworms only affected the population size of H. nitidus under high predation pressure, when collembolan numbers were higher in calcic mull than in moder, and were increased by the presence of earthworms. These results corroborate the hypothesis that earthworms, by increasing soil macroporosity, improve the escape routes for Collembola and thus evade predation. In moder humus earthworms increased the density of H. nitidus whether predators were present or not, so we cannot exclude that earthworms were also directly beneficial to H. nitidus. However, the hypothesis of a functional relationship mediated by soil macroporosity seems relevant since it was supported by differences observed when considering body size. When two size classes were distinguished within populations of H. nitidus (1) the positive effect of earthworms in moder was observed only on larger Collembola (>1 mm), (2) the density of the larger Collembola was decreased by predation only in moder and not in mull, (3) the effects of predators on the smaller individuals were not influenced by the presence of earthworms whatever the humus form, and was not decreased by the presence of earthworms. Nevertheless, factors other than macroporosity may operate as the presence of earthworms in acidic mull led to an unexplained decrease in the abundance of small-sized H. nitidus.  相似文献   

10.
Soil microarthropods colonize a wide range of habitats including microhabitats such as earthworm burrows, ant nests, tree trunks, moss mats and wood decaying fungi. While many of these microhabitats have been investigated intensively, the role of wood decaying fungi as a habitat and food resource for microarthropods found little attention. We investigated the density, community structure, reproductive mode and trophic structure of microarthropods, in particular oribatid mites, in the wood decaying fungus Fomitopsis pinicola (Schwarts: Fr) Karst. along an altitudinal gradient in Germany spanning from 350 m to 1160 m. Microarthropods were extracted from sporocarps, and stable isotope ratios (15N/14N; 13C/12C) of the fungus and the microarthropods were measured. Densities of most microarthropod taxa were highest at lower altitudes and decreased with increasing altitude. Oribatid mites were the dominant animal taxon. Their community structure gradually changed with altitude. Stable isotope ratios indicated that oribatid mite and other arthropod species occupy distinct trophic niches but most do not feed on F. pinicola. Notably, species of the same genus, e.g. Carabodes, occupied different trophic niches. Most oribatid mite species in F. pinicola reproduced sexually which is similar to the bark of trees but in contrast to the soil where most species reproduce via parthenogenesis. The findings indicate that (1) at high altitudes microarthropod density in fungal fruiting bodies is limited by low temperatures reducing animal metabolism and reproduction, and this also affects oribatid mite community structure, (2) despite the uniform habitat trophic niches of oribatid mite species differ and this also applies to morphologically similar species of the same genus, and (3) feeding on F. pinicola or associated resources facilitates the dominance of sexual reproducing species.  相似文献   

11.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

12.
To examine whether their strongly hardened cuticle permits adult oribatid mites (Acari) to live in enemy-free space, we investigated (1) if Pergamasus septentrionalis, a widespread and abundant predatory mesostigmate mite species, is able to feed on oribatid mites, (2) if this predator preferentially feeds on certain oribatid mite species and (3) to what extent oribatid mites are consumed compared to collembolans and juvenile Mesostigmata. Single adult individuals of six different oribatid mite species (Steganacarus magnus; Nothrus silvestris; Damaeus riparius; Liacarus coracinus; Eupelops plicatus; Achipteria coleoptrata), one collembolan species (Folsomia quadrioculata) and juvenile Pergamasus spp. were offered separately to adult P. septentrionalis in a no-choice feeding experiment. The predators quickly and preferentially fed on collembolans and juvenile Pergamasus; three oribatid mite species were occasionally eaten (L. coracinus, N. silvestris, A. coleoptrata); the other oribatid mite species were rejected as food (E. plicatus, S. magnus, H. riparius). When preying on oribatid mites, P. septentrionalis typically first cut off the legs of the mite, then opened the body through the region of the genital plates or the mouthparts. The results suggest that predator pressure on adult oribatid mites in the field is low, since few relevant predators at the study site are more abundant and powerful than P. septentrionalis. Adult oribatid mites therefore likely indeed live in enemy-free space, i.e. are little affected by predators, but that may not apply to soft-bodied immatures. Collembolans were quickly consumed indicating that they comprise a major part of the diet of P. septentrionalis. Strong feeding on juveniles of Pergamasus suggests that P. septentrionalis also functions as an intra-guild predator.  相似文献   

13.
Microarthropod abundance, oribatid mite species richness and community composition were assessed in the high canopy (ca. 35 m) of an ancient temperate rainforest and compared with microarthropod communities of the forest floor. Microarthropods were extracted from 72 core samples of suspended soils and 72 core samples from forest floors associated with six western redcedar trees in the Walbran Valley on the southwest coast of Vancouver Island, Canada. Total microarthropod abundances, mesostigmatid and astigmatid mites, Collembola and other microarthropod abundances were significantly greater in forest floors compared to canopy habitats. Oribatid and prostigmatid mite abundance were not significantly different between habitats. The relative abundances of all microarthropod groups considered in this study differed significantly between habitats. Eighty-eight species of oribatid mites were identified from the study area. Eighteen of the 53 species observed in suspended soils were unique to the canopy. Cluster analysis indicates that the arboreal oribatid mite community is distinct and not a taxonomic subset of the forest floor assemblage, however, canopy oribatid mite communities are more heterogeneous in species composition than in the forest floor.  相似文献   

14.
The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term effect of Ca, N, PK, and NPK addition on the productivity and diversity of both vegetation and soil biota. Whereas plant diversity increased by liming and decreased by N and NPK, the diversity of nematodes, collembolans, mites, and enchytraeids increased by N, PK, or NPK. Fertilization with NPK and PK increased plant biomass and biomass of enchytraeids and collembolans. Biomass of nematodes and earthworms increased by liming. Our results suggest that soil diversity might be driven by plant productivity rather than by plant diversity. This may imply that the selection of measures for restoring or conserving plant diversity may decrease soil biota diversity. This needs to be tested in future experiments.  相似文献   

15.
The role of tree diversity and identity as determinants of soil animal community structure is little understood. In a mature deciduous forest dominated by beech we identified clusters of one, two and three tree species of beech, ash and lime allowing to investigate the role of tree species diversity and identity on the density and community structure of oribatid mites. To relate oribatid mite community structure to environmental factors we measured leaf litter input, fine root biomass, mass of organic layers, topsoil pH and C and N content. We expected oribatid mite density to increase with increasing tree diversity, but we expected the effects of tree species identity to override effects of tree diversity. Further, we hypothesized the density of oribatid mites to be reduced by the presence of beech but increased by the presence of lime and ash. As expected tree diversity little affected oribatid mite communities, whereas tree species identity strongly altered density and community structure of oribatid mites. However, in contrast to our expectations the density of oribatid mites was highest in presence of beech indicating that many oribatid mite species benefit from the presence of recalcitrant litter forming thick organic layers. Especially Oppioidea benefited from the presence of beech presumably due to an increased availability of food resources such as fungi and nematodes. Lower density of oribatid mites in monospecific clusters of lime and ash suggests that oribatid mites did not benefit from high quality litter of these species. Notably, large and strongly sclerotized oribatid mite species, such as Steganacarus magnus and Chamobates voigtsi, benefited from the presence of ash and lime. Presumably, these large species better resist harsh microclimatic conditions in shallow organic layers.  相似文献   

16.
Earthworms and soil arthropods are major groups involved in soil decomposition processes. Although the interaction between these organisms can influence decomposition rates, little is known about their population dynamics during the decomposition of organic matter. In this study, we used the pig manure decomposition process to evaluate the effects of the presence of the epigeic earthworm Eisenia fetida on seven groups of soil arthropods: springtails, astigmatid, prostigmatid, mesostigmatid and oribatid mites, psocids and spiders. We carried out an experiment in which low and high doses (1.5 and 3 kg, respectively) of pig manure were applied in consecutive layers to small-scale mesocosms with and without earthworms. The presence of E. fetida increased the overall number of soil arthropods regardless of the dose of manure applied. This result was mainly due to the presence of large populations of springtails and mesostigmatid mites. Springtails were more abundant in the new layers of the mesocosms, which indicated a preference for substrates with fresh organic matter and higher microbial biomass. The other arthropod groups were consistently favored by the presence of earthworms, but remained at low densities throughout the decomposition process. Only the psocids were negatively affected by the presence of E. fetida. These results suggest that the development of large populations of soil arthropods, mainly springtails, in the mesocosms with earthworms is a characteristic feature of the initial stages of the earthworm-driven decomposition process.  相似文献   

17.
The effects of microhabitat diversity and geographical isolation on the structure of oribatid communities were studied in mangrove forests on the Ryukyu Islands of Japan. The study took place at three sites on two islands 470 km apart. Oribatid mites (Oribatida) were extracted from leaves, branches, bark of trunks (0-50, 50-100, and 100-150 cm high) and of knee roots, and from forest-floor soil and littoral algae, each defined as a microhabitat of oribatid mites. At the 0-50 cm height, the species composition of the oribatid communities on the knee-root bark and the bark of trunks of Bruguiera gymnorrhiza differed significantly from that on the other microhabitats. This difference was attributed to tidal flooding of the mangrove forests. Cluster analysis showed that oribatid communities in the same microhabitat at different sites tended to be more similar than those on different microhabitats at the same site. This implies that the species composition of oribatid communities in mangrove forests is more likely to be affected by factors responsible for microhabitat diversity (characterized specifically by the flooded trunks) than by geographical distance between the islands.  相似文献   

18.
Recent stable isotope analyses indicate that a number of putative detritivorous soil microarthropods is not typical detritivores but rather live as predators or scavengers. Using molecular gut content analyses the present study investigates if nematodes indeed form part of the diet of oribatid mites. First, in a no-choice laboratory feeding experiment two nematode species (Phasmarhabditis hermaphrodita and Steinernema feltiae) were offered to eight species of oribatid mites and one gamasid mite. Second, after feeding for 4 and 48 h on each nematode species the detection time of prey DNA in the oribatid mite species Steganacarus magnus was investigated. Third, in a field experiment nematode prey (P. hermaphrodita and S. feltiae) in the diet of microarthropods was investigated distinguishing between scavenging and predation. In the no-choice laboratory experiment not only the gamasid mite but also several of the studied oribatid mite species consumed nematodes. After feeding on nematodes for 4 h prey DNA was detectable in S. magnus for only 4 h, but after feeding for 48 h prey DNA was detectable for 128 h, indicating that the duration of feeding on prey is an important determinant for prey DNA detection. The field experiment confirmed that oribatid mite species including Liacarus subterraneus, Platynothrus peltifer and S. magnus intensively prey on nematodes. Interestingly, DNA of dead P. hermaphrodita was detectable to a similar degree as that of living individuals indicating that scavenging is of significant importance in decomposer food webs. Results of our study indicate that predation and scavenging on nematodes by “detritivorous” microarthropods in soil food webs need to be reconsidered.  相似文献   

19.
The soil animal food web has become a focus of recent ecological research but trophic relationships still remain enigmatic for many taxa. Analysis of stable isotope ratios of N and C provides a powerful tool for disentangling food web structure. In this study, animals, roots, soil and litter material from a temperate deciduous forest were analysed. The combined measurement of δ15N and δ13C provided insights into the compartmentalization of the soil animal food web. Leaf litter feeders were separated from animals relying mainly on recent belowground carbon resources and from animals feeding on older carbon. The trophic pathway of leaf litter-feeding species appears to be a dead end, presumably because leaf litter feeders (mainly diplopods and oribatid mites) are unavailable to predators due to large size and/or strong sclerotization. Endogeic earthworms that rely on older carbon also appear to exist in predator-free space. The data suggest that the largest trophic compartment constitutes of ectomycorrhizal feeders and their predators. Additionally, there is a smaller trophic compartment consisting of predators likely feeding on enchytraeids and potentially nematodes.  相似文献   

20.
Previous studies of oribatid mite feeding preferences for different saprotrophic fungi were limited to ubiquitous fungal species, whereas saprophytes specialized to decompose particular substrates have been neglected. We examined the preference of seven oribatid mite species (Adoristes ovatus, Eniochthonius minutissimus, Eueremaeus silvestris, Nothrus silvestris, Oppiella subpectinata, Porobelba spinosa and Spatiodamaeus verticillipes) for nine autochthonous saprotrophic fungi from Scots pine litter (Pinus sylvestris). Among the fungal species offered were specific coniferous litter colonizers (Allantophomopsis lycopodina, Ceuthospora pinastri, Hormonema dematioides, Scleroconidioma sphagnicola, Verticicladium trifidum, Marasmius androsaceus and Sympodiella acicola) and two ubiquitous species (Cladosporium herbarum and Oidiodendron griseum). The fungi were inoculated on fragments of pine needles and offered simultaneously and separately to the mites. Our main hypothesis, that oribatid mites (usually occurring in more than one type of ecosystems) would prefer the ubiquitous fungal species rather than those specific to pine litter, was supported only partly. The ubiquitous C. herbarum was highly preferred by all studied mites, but most of them preferred one or more of the specialized fungi with similar intensity. The basidiomycete M. androsaceus along with sterile needles were consistently avoided by all mites in all experiments. Our results do not support the hypothesis, that the “true” fungivorous oribatid mites in traditional sense are more selective fungal feeders than are the “unspecialized” panphytophagous ones. We observed no gradation in preference of fungi for oribatid mites as a group, but rather a discontinuous and dynamic mosaic with particular mites preferring particular fungal species. This heterogeneous mosaic shapes the feeding niches occupied by particular oribatid mite species and probably reduces competition for food source among numerous species coexisting in a given habitat and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号