首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phosphomonoesterase (PMEase) activity plays a key role in nutrient cycling and is a potential indicator of soil condition and ecosystem stress. We compared para-nitrophenyl phosphate (pNPP) and 4-methylumbelliferyl phosphate (MUP) as substrate analogues for PMEase in 7 natural ecosystem soils and 8 agricultural top soils with contrasting C contents (8.0-414 g kg−1 C) and pH (3.0-7.5). PMEase activities obtained with pNPP (0.05-5 μmol g−1 h−1) were significantly less than activities obtained with MUP (0.9-13 μmol g−1 h−1), especially in soils with a high organic matter content (>130 g kg−1). Only PMEase activities assayed with MUP correlated significantly with total C and total N (r=0.7, P<0.01 all), and pH (r=−0.71, P<0.01). PMEase activities obtained with the two substrate analogues were correlated when expressed on a C-content basis (r=0.8, P<0.001), but not when expressed on an oven-dry soil weight basis. This indicated that interference by organic matter is related to the quantity rather than to the quality of organic matter. Overall, assaying with MUP was more sensitive compared to assaying with pNPP, particularly in the case of high organic and acid soils.  相似文献   

2.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

3.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

4.
The aims of this study were to determine the degree of lignin degradation and to investigate changes in the chemical composition of the organic matter in the forest floor in an N fertilized Norway spruce forest soil. Needle litter and mor humus were collected from the field experiment at Skogaby in southern Sweden (56°33′N; 13°13′E). The spruce stand had been fertilized for 11 years with 100 kg N ha−1 yr−1 as (NH4)2SO4. The degree of lignin degradation was determined with alkaline CuO oxidation followed by HPLC analysis. The chemical composition of the organic matter was characterized by CPMAS 13C NMR. Tannin was specifically analyzed using dipolar dephasing CPMAS 13C NMR and the N distribution was studied by CPMAS 15N NMR.The C-to-N ratios in the fertilized Oi and Oe layers were significantly lower than in the unfertilized layers (24 compared to 34 and 23 compared to 27, respectively). Neither the sum of the CuO oxidation products (Vanillyls+Syringyls+Cinnamyls expressed as VSC) nor the acid-to-aldehyde ratio ((Ac/Al)V) showed any significant treatment effects. The content of aromatic C (including phenolic C) was significantly lower in the unfertilized than in the fertilized Oi layer (18 versus 21%). In the unfertilized soil, VSC was positively correlated (r=+0.63, p<0.05) with the C-to-N ratio, whereas the phenolic C content was negatively correlated (r=−0.61, p<0.05). The tannin index showed a tendency of increasing from Oi to Oe layers in both treatments. Most of the organic N was found as amide-N, whereas no heterocyclic N was detected. We have not been able to show any major C structural changes due to N fertilization. We suggest that the significantly higher content of aromatic and phenolic C in the fertilized Oi layer is due to an initial stimulation of the microbial community.  相似文献   

5.
Impacts of 22-year organic and inorganic N managements on total organic carbon (TOC), water-soluble organic C (WSOC), microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidized organic C (KMnO4-C) concentrations, C management index (CMI), and C storage in surface soil (0–20 cm) were investigated in a maize (Zea may L.) field experiment, Northeast China. The treatments included, CK: unfertilized control, M: organic manure (135 kg N ha− 1 year− 1), N: inorganic N fertilizer (135 kg N ha− 1 year− 1) and MN: combination of organic manure (67.5 kg N ha− 1 year− 1) and inorganic N fertilizer (67.5 kg N ha− 1 year− 1). TOC concentration and C storage were significantly increased under the M and MN treatments, but not under the inorganic N treatment. The organic treatments of M and MN were more effective in increasing WSOC, MBC, POC and KMnO4-C concentrations and CMI than the N treatment. The M treatment was most effective for sequestrating SOC (10.6 Mg ha− 1) and showed similar increase in degree of grain yield to the N and MN treatments, therefore it could be the best option for improving soil productivity and C storage in the maize cropping system.  相似文献   

6.
Methane oxidation in forest soils removes atmospheric CH4. Many studies have determined methane uptake rates and their controlling variables, yet the microorganisms involved have rarely been assessed simultaneously over the longer term. We measured methane uptake rates and the community structure of methanotrophic bacteria in temperate forest soil (sandy clay loam) on a monthly basis for two years in South Korea. Methane uptake rates at the field site did not show any seasonal patterns, and net uptake occurred throughout both years. In situ uptake rates and uptake potentials determined in the laboratory were 2.92 ± 4.07 mg CH4 m−2 day−1 and 51.6 ± 45.8 ng CH4 g−1 soil day−1, respectively. Contrary to results from other studies, in situ oxidation rates were positively correlated with soil nitrate concentrations. Short-term experimental nitrate addition (0.20-1.95 μg N g−1 soil) significantly stimulated oxidation rates under low methane concentrations (1.7-2.0 ppmv CH4), but significantly inhibited oxidation under high methane concentrations (300 ppmv CH4). We analyzed the community structures of methanotrophic bacteria using a DNA-based fingerprinting method (T-RFLP). Type II methanotrophs dominated under low methane concentrations while Type I methanotrophs dominated under high methane concentrations. Nitrogen addition selectively inhibited Type I methanotrophic bacteria. Overall, the results of this study indicate that the effects of inorganic N on methane uptake depend on methane concentrations and that such a response is related to the dissimilar activation or inhibition of different types of methanotrophic bacteria.  相似文献   

7.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

8.
We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean=33.1 mg CH4 m−2 d−1) was observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean=214 mg CH4 m−2 d−1) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands.  相似文献   

9.
Using pre-established trial sites on allophanic soils, we investigated the impacts of long to medium-term pastoral management practices, such as fertilisation and grazing intensity, on a range of soil biological and biochemical properties; hot water-extractable C (HWC), water-soluble C (WSC), hot-water extractable total carbohydrates, microbial biomass-C and N and mineralisable N. These properties were examined for their usefulness as soil quality indicators responding to changes in the rhizosphere caused by management practices. Adjacent cropping, market garden and native bush sites located on similar soil types were included to determine the changes in soil biological and biochemical properties resulting from changes in land use. The seasonal variability of HWC and its relationship with other labile fractions of soil organic matter was also examined.Microbial biomass-C, mineralisable N and extractable total carbohydrates showed promise in differentiating treatment and land use effects. However, HWC was one of the most sensitive and consistent indicators examined at 52 different sites. The impact of different land uses on the amounts of HWC in the same soil type was far greater than that was observed for the soil organic carbon. The average values of HWC for soil under different land use were: native (4000 μg C g−1 soil), sheep/beef pastures (3400), dairy pastures (3000), cropping (1000) and market gardening soils (850). HWC was also sensitive to differences within an ecosystem, e.g. effects of grazing intensities and effects of N or P fertilisers on pastures. The sheep and beef/cattle grazed pastures always had higher amounts of HWC than the intensively grazed dairy pastures. Nitrogen fertiliser application (200 and 400 kg N ha−1 yr−1) over the previous 5 yr had significant (P<0.001) negative impacts on HWC and other soil microbial properties. In contrast, long-term application of P fertilisers had a significant (P<0.001) positive effect on the HWC levels in pastoral soils. In the case of long-term P trials, HWC increased even though no increase in the total soil carbon pool was detected.HWC was positively correlated with soil microbial biomass-C (R2=0.84), microbial nitrogen (R2=0.72), mineralisable N (R2=0.86), and total carbohydrates (R2=0.88). All these correlations were significant at P<0.001 level of significance. The HWC was also positively correlated with WSC and total organic C. However, these correlations were poorer than those found for other soil parameters. Most of these measurements have been actively promoted as key indicators of soil quality. Given the strong correlations between HWC and other biochemical measurements, HWC could be used as an integrated measure of soil quality. When HWC is extracted, other pools of labile nutrients are also extracted along with C. Therefore it is suggested that decline in HWC would also indicate a decline in other labile organic pools of nutrients such as nitrogen, sulphur and phosphorus. About 40-50% of the C in the HWC extract was present as carbohydrates.  相似文献   

10.
Emissions of N2O were measured following addition of 15N-labelled (2.6-4.7 atom% excess 15N) agroforestry residues (Sesbania sesban, mixed Sesbania/Macroptilium atropurpureum, Crotalaria grahamiana and Calliandra calothyrsus) to a Kenyan oxisol at a rate of 100 mg N kg soil−1 under controlled environment conditions. Emissions were increased following addition of residues, with 22.6 mg N m−2 (124.4 mg N m−2 kg biomass−1; 1.1 mg 15N m−2; 1.03% of 15N applied) emitted as N2O over 29 d after addition of both Sesbania and Macroptilium residues in the mixed treatment. Fluxes of N2O were positively correlated with CO2 fluxes, and N2O emissions and available soil N were negatively correlated with residue lignin content (r=−0.49;P<0.05), polyphenol content (r=−0.94;P<0.05), protein binding capacity (r=−0.92;P<0.05) and with (lignin+polyphenol)-to-N ratio (r=−0.55;P<0.05). Lower emission (13.6 mg N m−2 over 29 d; 94.5 mg N m−2 kg biomass−1; 0.6 mg 15N m−2; 0.29% of 15N applied) after addition of Calliandra residue was attributed to the high polyphenol content (7.4%) and high polyphenol protein binding capacity (383 μg BSA mg plant−1) of this residue binding to plant protein and reducing its availability for microbial attack, despite the residue having a N content of 2.9%. Our results indicate that residue chemical composition, or quality, needs to be considered when proposing mitigation strategies to reduce N2O emissions from systems relying on incorporation of plant biomass, e.g. improved-fallow agroforestry systems, and that this consideration should extend beyond the C-to-N ratio of the residue to include polyphenol content and their protein binding capacity.  相似文献   

11.
Nitrous oxide emissions are usually increased following incorporation of N-rich plant residues, but the effects of residue soluble C and N contents on emissions have still to be determined. Here we report a controlled environment experiment in which emissions of N2O were measured following addition of 15N-labelled (2.5-4.2 atom % excess 15N) agroforestry residues (Sesbania sesban, Macroptilium atropurpureum and Crotalaria grahamiana) to an Oxisol. Exposure of these trees to different irradiance during growth resulted in differences in water-soluble C and N contents. The highest emissions were generally measured from the lower water-soluble C and N (LS) residues with 7 mg N2O-N m−2 emitted over 29 d after addition of Crotalaria LS residues (4.9% soluble C, 0.7% soluble N). Emissions were negatively correlated with the residue soluble C-to-N ratio (r=−0.68 to −0.89; P<0.05) at the time of main flux activity during the first 8 d after residue addition, indicating that under controlled environmental conditions substrates with a high soluble C-to-N ratio may result in low N2O emissions during the early stages of residue decomposition. This relationship has still to be verified under field conditions.  相似文献   

12.
We set up a protocol for the assay of the arylesterase activity, using p-nitrophenyl acetate (p-NPA) as substrate, dimethylsulfoxide as solvent, modified universal buffer at pH 7.5, and determination of the reaction product (p-nitrophenol) after separation of non-hydrolysed p-NPA after reaction, and tested it using eight soils with a wide range of characteristics. Various incubation temperatures and times, pH values and substrate concentrations were also used to find the optimal conditions for the enzyme activity and to determine characteristics and kinetic parameters of soil arylesterase. Arylesterase activity was significantly correlated with total organic C, total N, and soil ATP content. Soil arylesterase activity showed a pH optimum at 7.5, optimal temperature between 55 and 65 °C and linear increase with incubation time. The Km values ranged from 4.3 to 8.5 mM, the Vmax values from 326 to 803 μmol p-NP g−1 h−1, with higher Km values observed in soils with higher organic matter content. We conclude that the proposed assay protocol is suitable to determine the arylesterase activity in a wide range of soils.  相似文献   

13.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

14.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

15.
Earthworms are known to be important regulators of soil structure and soil organic matter (SOM) dynamics, however, quantifying their influence on carbon (C) and nitrogen (N) stabilization in agroecosystems remains a pertinent task. We manipulated population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional (i.e., mineral fertilizer), organic (i.e., composted manure and legume cover crop), and an intermediate low-input system (i.e., alternating years of legume cover crop and mineral fertilizer)] to examine their influence on C and N incorporation into soil aggregates. Two treatments, no-earthworm versus the addition of five A. rosea adults, were established in paired microcosms using electro-shocking. A 13C and 15N labeled cover crop was incorporated into the soil of the organic and low-input systems, while 15N mineral fertilizer was applied in the conventional system. Soil samples were collected during the growing season and wet-sieved to obtain three aggregate size classes: macroaggregates (>250 μm), microaggregates (53-250 μm) and silt and clay fraction (<53 μm). Macroaggregates were further separated into coarse particulate organic matter (cPOM), microaggregates and the silt and clay fraction. Total C, 13C, total N and 15N were measured for all fractions and the bulk soil. Significant earthworm influences were restricted to the low-input and conventional systems on the final sampling date. In the low-input system, earthworms increased the incorporation of new C into microaggregates within macroaggregates by 35% (2.8 g m−2 increase; P=0.03), compared to the no-earthworm treatment. Within this same cropping system, earthworms increased new N in the cPOM and the silt and clay fractions within macroaggregates, by 49% (0.21 g m−2; P<0.01) and 38% (0.19 g m−2; P=0.02), respectively. In the conventional system, earthworms appeared to decrease the incorporation of new N into free microaggregates and macroaggregates by 49% (1.38 g m−2; P=0.04) and 41% (0.51 g m−2; P=0.057), respectively. These results indicate that earthworms can play an important role in C and N dynamics and that agroecosystem management greatly influences the magnitude and direction of their effect.  相似文献   

16.
This study focuses on spatial heterogeneity in the soil microbial biomass (SMB) of typical climax beech (Fagus crenata) at the stand scale in forest ecosystems of the cold-temperate mountain zones of Japan. Three beech-dominated sites were selected along an altitudinal gradient and grid sampling was used to collect soil samples at each site. The highest average SMB density was observed at the site 1500 m a.s.l. (44.9 gC m−2), the lowest was recorded at the site 700 m a.s.l. (18.9 gC m−2); the average SMB density at the 550 m site (36.5 gC m−2) was close to the overall median of all three sites. Geostatistics, which is specifically designed to take spatial autocorrelation into account, was then used to analyze the data collected. All sites generally exhibited stand-scale spatial autocorrelation at a lag distance of 10-18 m in addition to the small-scale spatial dependence noted at <3.5 m at the 550 m site. Correlation analysis with an emphasis on spatial dependency showed SMB to be significantly correlated with bulk density at the 550 and 1500 m sites, dissolved organic carbon (DOC) at the 700 and 1500 m sites, and nitrogen (N) at the 550 and 700 m sites. However, no soil parameter showed a significant correlation with SMB at every site, and some variables were also differently correlated (negative or positive) with SMB at different sites. This suggests that the factors controlling the spatial distribution of SMB are very complex and responsive to local in situ conditions. SMB regression models were generated from both the ordinary least-squares (OLS) and generalized least-squares (GLS) models. GLS performance was only superior to OLS when cross-variograms were accurately fitted. Geostatistics is preferable, however, since these techniques take the spatial non-stationarity of samples into account. In addition, the sampling numbers for given minimum detectable differences (MDDs) are provided for each site for future SMB monitoring.  相似文献   

17.
Methane (CH4) uptake by soil can possibly be suppressed more in regions with heavy summer precipitation, such as those under the East Asian monsoon climate, as compared to that in regions with a dry summer. In order to determine how precipitation patterns affect seasonal and spatial variations in CH4 fluxes in temperate forest soils, such fluxes and selected environmental variables were measured on different parts of a hill slope in a cypress forest in central Japan. On the upper and middle parts of the slope, CH4 uptake was observed throughout the year, and the uptake rates increased slightly with soil temperature and decreased with soil water content. The CH4 flux predicted using data for the middle and upper parts of the slope ranged from −1.12 to −0.83 kg-CH4 ha−1 y−1 (i.e. CH4 uptake by soil) and from −2.30 to −2.04 kg-CH4 ha−1 y−1, respectively. In contrast, in the relatively wet lower part of the slope near an in-stream wetland, large CH4 emissions (>2 mg-CH4 m−1 d−1) were observed during the rainy summer. In this wetter plot, the soil functioned as a net annual CH4 source in a rainy year. Hence the variation in CH4 flux with a change in soil water conditions and soil temperature on the lower part of the slope contrasted to that on the upper and middle parts of the slope. The predicted CH4 flux for this lower plot ranged from −0.45 kg-CH4 ha−1 y−1 in a dry year to 1.80 kg-CH4 ha−1 y−1 in a rainy year. Our results suggest that consideration of the soil water conditions across a watershed is important for estimating the CH4 budgets for entire forest watershed, particularly in regions subject to a wet summer.  相似文献   

18.
Soils and vegetation were analyzed in 20 lodgepole pine (Pinus contorta) forest stands, varying in age from 50 to 350 years, that had initiated following stand-replacing fire. Our goal was to determine how nitrogen availability (NH4+-N) and microbial community composition varied with stand age-class and to determine whether differences could be explained by canopy, soil, or understory characteristics. Gross NH4+ mineralization was measured using laboratory isotopic pool dilution, and microbial community composition was evaluated using microbial membrane lipids. The microbial community composition of stands in the 300-350 age class was distinct from stands in younger age classes. Microbial community composition among sites varied with pH, % organic matter, and phosphorus. Gross NH4+ mineralization rates averaged 1.45±0.07 mg NH4+ kg soil−1 d−1 while consumption averaged 1.37±0.20 mg NH4+ kg soil−1 d−1, resulting in low net NH4+ mineralization rates (0.08±0.18 mg NH4+ kg soil−1 d−1), but rates were not significantly different with stand age-class at p<0.05. At p<0.10, net NH4+ mineralization was significantly higher in the 300-350 age class compared to the 125-175 age class. None of the measured variables significantly explained NH4+ consumption and net mineralization patterns. However, gross NH4+ mineralization rates were best explained by information on microbial community structure (i.e. lipids). Variation among stands within a given age-classes was high, indicating that patterns of N cycling across landscapes reflect substantial heterogeneity among mature stands.  相似文献   

19.
To quantify functionally important differences in soil organic matter (SOM) that result from use of different farming practices, soils from 9 long-term trials comparing manure+legume-based organic, legume-based organic, and conventional farming systems were collected and particulate organic matter (POM) was fractionated to reflect its position within the soil matrix. The free, light POM (FPOM; <1.6 g cm−3) not occluded within aggregates and occluded POM (OPOM; <2.0 g cm−3) were compared to an undifferentiated POM fraction (coarse fraction, CF; >53 μm) obtained by wet sieving. Fraction C, N, and hydrolyzable N (quantified using the Illinois test (IL-N)) were determined. Organic farming systems had greater quantities of C and N in the OPOM and CF and, greater IL-N contents in all POM fractions considered. The OPOM's C:N ratio (16-19) and was least in the manure+legume-based organic, intermediate in the legume-based organic, and greatest in the conventional systems (P<0.10). Trends in OPOM C:N and IL-N abundance suggested occluded POM was most decomposed, and possibly a greater N reservoir, in the manured soils. The FPOM quality reflected the residues added to each system and its removal improved resolution of quality-based differences in POM associated with long-term management. Subdivision of POM revealed differences in its quality that were not evident using the undifferentiated CF. Quantification of hydrolysable N (IL-N) in POM did not enhance our understanding of management's affect on SOM quality. This multi-site comparison showed organic management simultaneously increased the size of the labile N reservoir and the amount of POM protected within aggregates; and that, occluded POM is more decomposed in manure+legume- than in legume-based organic systems. The characteristics of POM reveal how organic practices improve SOM and suggest the nutrient and substrate decay dynamics of organic systems may differ as a result of the N fertilization strategies they employ.  相似文献   

20.
Patchy distribution of vegetation within semi-arid shrublands is normally mirrored in the soil beneath perennial shrubs (macrophytic patches), compared to inter-shrub areas (microphytic patches). To determine impacts of (1) litterfall inputs within vegetation patches and (2) rainfall distribution on soil C and N, we investigated soil C and N pools and associated soil properties in two semi-arid shrublands, in the Negev Desert of Israel (Lehavim), which receives >90% of annual rainfall during winter and in the Chihuahuan Desert, USA (FHMR) that experiences a bimodal (Summer-Winter) annual rainfall pattern. We also evaluated grazing effects on soil C and N pools at Lehavim. More distinct differences in soil properties existed between patch types at the Negev site, where the soils contained higher soil organic C and N, amino acids and sugars, asparaginase activity and plant-available N than those at FHMR. Soil organic C (0-5 cm) in macrophytic patches was 39 g/kg at Lehavim and 13 g/kg at FHMR, and asparaginase activity was as high as 70 μg N/g 2 h in macrophytic patches at Lehavim, two times higher than at FHMR. The soil (0-5 cm) δ13C was −15 to −18‰ at Lehavim and −18 to −19‰ at FHMR, with significantly lower δ13C in macrophytic patches at both sites. The δ13C suggested that considerable macrophytic patch soil C was derived from cyanobacteria at Lehavim and C4 grasses at FHMR. Plant litter δ15N was 0.9‰ at Lehavim and 0.6‰ at FHMR, suggesting that much plant N was derived from N fixation. Concentrations of inorganic soil N (NH4++NO3) were up to 37 mg N/kg at Lehavim and <9 mg N/kg at FHMR. Grazing at Lehavim resulted in lower soil CH, AA, and AS. We conclude that differences between the sites are due largely to (i) higher amounts of litterfall C and N inputs within macrophytic patches at Lehavim and (ii) the different precipitation patterns, with summer precipitation at FHMR promoting increased organic matter mineralization compared to Lehavim, which experiences Winter precipitation only. Furthermore, greater differences in soil properties between patch types at Lehavim compared to FHMR can likely be attributed to the increasing importance of physical processes of resource dispersion at the more humid site in Arizona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号