首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Interactive effects of a combined application of urea and compost on the fates of urea-N and net mineralization of compost-N in three soils with different contents of organic-C and inorganic-N were examined through an aerobic 6-week incubation study. Soils were each subjected to four treatments of urea and compost applied at rates of 0 and 0 mg N kg-1 (control), 115 and 0 mg N kg-1, 0 and 115 mg N kg-1, and 70 and 45 mg N kg-1, respectively. The interactive effects of a combined application of compost and urea on their N transformations varied depending on the contents of indigenous inorganic-N and organic-C in soils. Urea hydrolysis was increased by compost blending only in soils with a relatively low organic-C content. Compost blending increased N immobilization, thus decreasing nitrification of urea-derived N in soils with high organic-C and inorganic-N contents, whereas the reverse was observed in soils with low nutrient contents. Urea blending, by providing inorganic-N, consistently increased net mineralization of compost-N irrespective of soil characteristics, although the increase was much smaller in soil with high indigenous inorganic-N. From the results, it could be concluded that a combined application of chemical fertilizer would improve the compost use efficiency by increasing mineralization of compost-N particularly in soil with a low inorganic-N content. This study also suggests that compost blending would increase immobilization of urea-N in soils with high C and N contents, whereas it would increase nitrification of fertilizer-N in soils with low nutrients contents, thus resulting in increased NO3 - leaching.  相似文献   

2.
We investigated the influence of tree canopy composition and structure on the spatial and temporal variability of (i) concentrations of inorganic N (NH4+ and NO3) and (ii) net N-mineralization and net nitrification, within the temperate forest floor. We compared a pure European beech stand (PS) with a mixed beech-hornbeam one (MS). Three sampling areas were chosen in each stand. Within the PS, the tree locations represented a decreasing gradient of light intensity reaching the forest floor. Within the MS they represented a gradient in the amount of hornbeam leaves present in the litter. In the field NH4+ and NO3 concentrations were measured in the upper mineral soil (UMS) and the overlying organic layers (OL and OF+OH). Field exposures using buried bags were carried out on UMS over 1 year to measure in situ net N-mineralization and net nitrification. Potential net N-mineralization and net nitrification were investigated in summer with UMS, OL and OF+OH incubated at 28 °C for 28 days in the laboratory. We hypothesize that with the presence of a mull-forming species (hornbeam) within a stand dominated by a moder-forming one (European beech), (i) the spatial and (ii) temporal patterns of soil inorganic N concentrations, net N-mineralization and net nitrification would be different in the two stands. Our main results show that tree species composition has an influence on both spatial and temporal patterns of nitrification. The PS exhibited its highest peaks of UMS NO3 concentration and net nitrification in spring and early summer while they were highest in the MS in winter. Furthermore, PS exhibited a higher rate of net nitrification than MS. We discuss this unexpected result and suggest that dissolved organic C may be the controlling factor for net nitrification in the MS.  相似文献   

3.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

4.
Surface samples (0–10 cm) of two equally-acidic soils (pH 4.5) exhibited very different net N mineralization rates. In an andic soil, it was negligible despite a high (46%) organic matter content, whereas it was appreciable in a colluvial soil of lower (14%) organic matter content. During incubation experiments no NO?3 was observed in the andic soil, whereas nitrification occurred in the colluvial soil. Incorporation of added 15NH4 is much higher in the andic soil, despite no greater biological immobilization than in the colluvial soil.Added 15NO2? and nitrapyrin experiments showed that incorporation of inorganic-N into the organic fraction of the andic soil can also proceed via a chemical pathway, NO2? self-decomposition and fixation on organic matter. This can be a limitation to NO3? appearance in this soil. The protective effect of amorphous aluminium is also considered to lower mineralization of organic-N. These two mechanisms could be responsible for low concentration of inorganic-N in many aluminous humic-rich acidic soils.  相似文献   

5.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

6.
In arid areas of North America, nests of the seed-harvesting ant Pogonomyrmex rugosus tend to be elevated in mineral nitrogen and other soil nutrients relative to other microhabitats. We investigated the roles of decomposition, N mineralization, and plant nutrient uptake in maintaining high standing stocks of nutrients in P. rugosus ant nests. Decomposition rates of standard cellulose substrates placed on the surface of ant nests and other desert microhabitats suggest that conditions found in ant nests and bare areas are conducive to higher rates of decomposition than conditions under shrubs. In laboratory incubations of moist soil, net N mineralization rates were significantly higher in soil from ant nests than from bare areas and under two of three plant species. Net N mineralization rates measured in situ were much lower than those measured in laboratory incubations, but ant nest soil still exhibited higher rates at one of two sites. Litter collected from ant mounds, composed chiefly of seed chaff, was similar in N content to litter collected from underneath the dominant plant species, but had a significantly higher mean δ15N. Using this distinctive isotope signature as a tracer, we found no evidence that large perennial shrubs tap ant nests as a source of N. An invasive, annual grass species was significantly enriched in 15N, had higher leaf %N, and produced more seeds when growing on the mound than when growing several meters away; however P. rugosus nest surfaces are typically free of such annuals. We conclude that both high rates of nutrient cycling relative to other Mojave Desert microhabitats and low N utilization by the surrounding vegetation contribute to high standing stocks of mineral N in P. rugosus nests.  相似文献   

7.
An improved method is described for incubating intact soil cores in the field, which permits concurrent measurement of net mineralization, nitrification, denitrification and leaching. Cores were enclosed in PVC tubes with minimal disturbance to the physical state or to the natural cycles of wetting/drying, soil temperature and aeration during an incubation lasting 4–5 days. An example of the application of the method is given in which soils with contrasting drainage characteristics were compared. Over a 64-day experimental period, 58% of the mineralized nitrogen (N) in a freely drained soil was nitrified and 36% of the nitrate-N (NO3 -N) was denitrified. In a poorly drained soil, 72% of the mineralized N was nitrified and 63% of the NO3 -N was denitrified. In both soil types, 18% of the remaining NO3 -N was leached. Rates of nitrification were significantly correlated with net mineralization (r 2=0.41 and 0.52) and also closely correlated with denitrification (r 2=0.67 and 0.68) in the freely and poorly drained soils, respectively. Independent measurements of these processes, using alternative techniques (for the same period), compared favourably with measurements obtained with the improved incubation method. Adoption of this method has a number of advantages with respect to field net N mineralization, and also allows interpretation of the impact this may have on other N transformation processes. Received: 18 June 1997  相似文献   

8.
Forests naturally maintained by stand-replacing wildfires are often managed with clearcut harvesting, yet we know little about how replacing wildfire with clearcutting affects soil processes and properties. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following disturbance in jack pine (Pinus banksiana) stands in northern Lower Michigan, USA, by sampling soils (Oa+A horizons) from three “treatments”: 3-6-year-old harvest-regenerated stands, 3-6-year-old wildfire-regenerated stands and 40-55-year-old intact, mature stands (n=4 stands per treatment). We measured total C and N; microbial biomass and potentially mineralizable C and N; net nitrification; and gross rates of N mineralization and nitrification. Burned stands exhibited reduced soil N but not C, whereas clearcut and mature stands had similar quantities of soil organic matter. Both disturbance types reduced microbial biomass C compared to mature stands; however, microbial biomass N was reduced in burned stands but not in clearcut stands. The experimental C and N mineralization values were fit to a first-order rate equation to estimate potentially mineralizable pool size (C0 and N0) and rate parameters. Values for C0 in burned and clearcut stands were approximately half that of the mature treatment, with no difference between disturbance types. In contrast, N0 was lowest in the wildfire stands (170.2 μg N g−1), intermediate in the clearcuts (215.4 μg N g−1) and highest in the mature stands (244.6 μg N g−1). The most pronounced difference between disturbance types was for net nitrification. These data were fit to a sigmoidal growth equation to estimate potential NO3 accumulation (Nitmax) and kinetic parameters. Values of Nitmax in clearcut soils exceeded that of wildfire and mature soils (149.2 vs. 83.5 vs. 96.5 μg NO3-N g−1, respectively). Moreover, the clearcut treatment exhibited no lag period for net NO3 production, whereas the burned and mature treatments exhibited an approximate 8-week lag period before producing appreciable quantities of NO3. There were no differences between disturbances in gross rates of mineralization or nitrification; rather, lower NO3 immobilization rates in the clearcut soils, 0.20 μg NO3 g−1 d−1 compared to 0.65 in the burned soils, explained the difference in net nitrification. Because the mobility of NO3 and NH4+ differs markedly in soil, our results suggest that differences in nitrification between wildfire and clearcutting could have important consequences for plant nutrition and leaching losses following disturbance.  相似文献   

9.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

10.
Studies about nitrogen (N) mineralization and nitrification in deep soil layers are rare because N processes are considered to occur mainly in topsoil that hosts active and diverse microbial communities. This study aimed to measure the soil potential net N mineralization (PNM) and nitrification (PNN) down to 4 m depth and to discuss factors controlling their variability. Twenty-one soil cores were collected at the Restinclières agroforestry experimental site, where 14-year-old hybrid walnut trees were intercropped with durum wheat. Soil cores were incubated in the dark in the laboratory at both 6 and 25°C. The soil was a deep calcic fluvisol with a fluctuating water table. It featured a black layer that was very rich in organic matter and permanently water saturated at depths between 3.0 and 4.0 m. The mean soil mineral N content was 3 mg N kg−1 soil in the upper 0.0–0.2 m layer, decreasing until a depth of 2 m and increasing to the maximum value of 25.8 mg N kg−1 soil in the black layer. While nitrate (NO3) was the dominant form of mineral N (89%) in the upper 0.0–0.2 m layer, its proportion progressively decreased with depth until ammonium (NH4+) became almost the only form of mineral N (97%) in the saturated black layer. Laboratory soil incubation revealed that PNM and PNN occurred at all depths, although the latter remained low at 6°C. The soil nitrate content in the black layer was multiplied by 48 times after 51 days of incubation at 25°C, whereas it was almost inexistent at the sampling date. While the soil total N, the pH and the incubation temperature explained 84% of the variation in PNM, only 29% of the percent nitrification variance was explained by the incubation temperature (Tinc) and the soil C-to-N ratio. These results point out the necessity to consider soil potential net N mineralization and nitrification of deep soil layers to improve model predictions.  相似文献   

11.
华北平原农田生态系统土壤C、N净矿化及尿素转化研究   总被引:4,自引:0,他引:4  
以华北平原区4个农田生态系统[京郊蔬菜大棚(GH)和河北栾城(LF)、河北南皮(NF)、山东惠民(HF)3个粮田]为研究对象,采用室内好气、恒温、避光条件下培养30.d,对比研究了不同海拔和不同农业扰动强度下的农田生态系统中耕层(020.cm)土壤的净N矿化、净硝化、净C矿化以及尿素的转化,旨在探索人类农业扰动强度和地理海拔对土壤供N潜力和尿素N转化的影响。结果表明,4个地区的土壤供N潜力分别为:14.4、13.2,17.7和16.5.mg/kg,说明高度熟化的华北区农田土壤供N潜力相对稳定。以施用有机肥为主的蔬菜大棚和以施用化肥为主的粮田对土壤供N没有显著影响。农田土壤净矿化后的供N形式主要是NO3--N。以施用有机肥为主的蔬菜大棚积累了较高的土壤有机质和全N,但是土壤净C矿化以及施用尿素后CO2的排放量均低于以施用化肥为主的粮田。尿素在各区域农田土壤中水解转化后均主要以NO3--N形式存在,NO3--N占尿素水解后无机N增量的98%9~9%;华北平原农田生态系统施入尿素态N.30d后,水解成有效态无机N的转化率为63.4%8~3.2%,即每克尿素态N在京郊蔬菜大棚(GH)、栾城高产农田(LF)、南皮农田(NF)和惠民农田(HF)土壤中转化为NO3--N的量分别为0.69、0.82、0.64和0.63.g/kg,同时可使相应区域农田的CO2排放量分别增加CO21.20、1.360、.67和1.58.g/kg。  相似文献   

12.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

13.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

14.
A field study was conducted during the summer of 1995 to gain abetter understanding of the causes of nitrate (NO3-N)leaching and ongoing changes in soil nitrogen (N) availabilityin high-elevation (1524–2000 m) spruce (Picea rubens) andfir (Abies fraseri) forests of the Great Smoky MountainsNational Park, Tennessee and North Carolina, U.S.A. Indicatorsof soil N availability (total soil N concentrations,extractable NH4-N, extractable NO3-N, and C/N ratios)were measured in Oa and A horizons at 33 study plots. Dynamicmeasures included potential net soil N mineralization determinedin 12-week aerobic laboratory incubations at 22 °C.Potential net nitrification in the A horizon was correlated (r =+0.83, P < 0.001) with total soil N concentrations. Mostmeasures of soil N availability did not exhibit significanttrends with elevation, but there were topographic differences.Potential net soil N mineralization and net nitrification in theA horizon were higher in coves than on ridges. Relative amountsof particulate and organomineral soil organic matter influencedpotential net N mineralization and nitrification in the Ahorizon. Calculations indicate that soil N availability andNO3-N leaching in high-elevation spruce and fir forests ofthe Great Smoky Mountains National Park will increase inresponse to regional warming.  相似文献   

15.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

16.
Abstract

Herbicides have potential for economical and efficient site preparation following timber harvest. The effects of tebuthiu‐ron, one of the herbicides approved for this use, on soil nitrogen (N) mineralization and nitrification were determined in laboratory incubations. Tebuthiuron was added at rates from 0 to 1000 μg g‐1 to three soils. There was no effect of tebuthiuron additions of less than 1 μg g‐1 on soil N mineralization and nitrification. Tebuthiuron reduced nitrification in all soils at 1000 μg g‐1 and in two of the soils at 100 μg g‐1 . All soils had increased net mineralization with tebuthiuron added at 100 and 1000 μg g‐1. The addition of 50 μg NH+ 4‐N and 1000 μg tebuthiuron g‐1 resulted in increased net mineralization in the three soils. Nitrification was affected differently in each of the three soils by the addition of both NH+ 4‐N and tebuthiuron. The added NH+ 4‐N either removed the inhibition of nitrification by the herbicide or had no effect on the inhibition in two of the soils. In the third soil, nitrification was reduced by the addition of NH+ 4‐N.

The presence of NO 3‐N in these acid soils and the effects of added NH+ 4‐N on NO 3‐N production suggest that heterotrophic nitrification occurs in at least two of the soils. The findings of this study indicate that any effects of tebuthiuron on N mineralization and nitrification at the currently recommended application rates are likely to be transient and localized.  相似文献   

17.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

18.
A laboratory experiment was designed to challenge the idea that the C/N ratio of forest soils may control gross N immobilization, mineralization, and nitrification rates. Soils were collected from three deciduous forests sites varying in C/N ratio between 15 and 27. They were air-dried and rewetted to induce a burst of microbial activity. The N transformation rates were calculated from an isotope dilution and enrichment procedure, in which 15NH4Cl or Na15NO3 was repeatedly added to the soils during 7 days of incubation. The experiments suggested that differences in gross nitrogen immobilization and mineralization rates between the soils were more related to the respiration rate and ATP content than to the C/N ratio. Peaks of respiration and ATP content were followed by high rates of mineralization and immobilization, with 1-2 days of delay. The gross immobilization of NH4+ was dependent on the gross mineralization and one to two orders of magnitude larger than the gross NO3 immobilization. The gross nitrification rates were negatively related to the ATP content and the C/N ratio and greatly exceeding the net nitrification rates. Taken together, the observations suggest that leaching of nitrate from forest soils may be largely dependent on the density and activity of the microbial community.  相似文献   

19.
It is a common agricultural practice for crop residues to be plowed into the soil or left on the soil surface. Soil addition of crop residues can considerably modify soil microbial activity and net N mineralization, and in general such modifications are negatively related to the C:N ratios of crop residues. Yet, little is known on the impacts of crop residues of different C:N ratios on soil nitrous oxide (N2O) production under different aeration conditions via nitrification and denitrification. In this study, an 84-day laboratory incubation was conducted under aerobic and O2-limited conditions and soil N2O production was measured every 3 days after the addition of plant materials with a wide range of C:N ratios from 14 to 297. Two aerobic conditions were created by adjusting the water content of soil at a bulk density of 1.1 g cm−3 to 30% water-filled pore space (WFPS) and 60% WFPS, and two O2-limited conditions were made by 90% WFPS and fluctuation between 90% and 30% WFPS. Each fluctuation cycle lasted 9 days and soil water content was readjusted to 90% WFPS at the end of each cycle. We also measured microbial respiration activity and net N mineralization periodically (i.e., 3, 7, 14, 28, 42, 56, 70, and 84 days) during the incubation and microbial biomass C at the end of incubation. At aerobic conditions, soil amendments of plant materials, regardless of their C:N ratios, all enhanced soil N2O production. However, net N mineralization was dependent on plant material C:N ratios, being significantly higher or lower than the control for C:N ratios ∼15 and C:N ratios ≥44, respectively. Such inconsistent responses indicated that nitrifiers mediating nitrification and therefore byproduct N2O production could strongly compete with heterotrophic microbes for NH4+ and therefore net N mineralization was not a good predictor for nitrification-associated N2O production. Interestingly, plant material additions reduced soil N2O production by up to ∼95% at O2-limited conditions, perhaps due to NO3 limitation. Soil NO3 production via nitrification could be low at O2-limited conditions, and soil NO3 availability could be further reduced due to increases in microbial biomass and thus microbial N assimilation after plant material additions. This NO3 limitation might enhance N2O reduction to N2, by which denitrifiers could harvest more energy from the consumption of limited NO3. Nonetheless, our results revealed contrasting differences in N2O production between aerobic and O2-limited conditions following soil amendments of plant materials.  相似文献   

20.
We studied controls on nitrification in an undisturbed water-limited ecosystem by inhibiting autotrophic nitrifying bacteria in soils with varying levels of vegetative cover. The activity of nitrifying bacteria was disrupted using nitrapyrin, 2-chloro-6-(trichloromethyl)-pyridine, under field conditions in three microenvironments (underneath shrubs, next to grasses and in bare soil). Ammonia-oxidising bacteria were detected by PCR analysis of DNA in soils. The inhibition of nitrification changed the concentrations of NO3 and NH4+ in the soil, while the microenvironment was most important in determining the response of bacteria to the inhibitor. Nitrapyrin application resulted in a significant (p<0.05) reduction in soil NO3 concentration (39%) and a significant increase (p<0.001) in soil NH4+ concentration (41%). Untreated bare-soil microenvironments had the lowest concentrations of NH4+ (1.57 μg/g of dry soil) and NO3 (0.49 μg/g of dry soil) when compared to the other microenvironments, and showed the highest impacts of nitrification inhibition. For example, NH4+ concentrations increased 288% and NO3 concentrations decreased 60% in inhibited bare-soil microenvironments. In contrast, untreated microenvironments underneath shrubs had the highest levels of NH4+ (10.01 μg/g of dry soil) and NO3 (0.69 μg/g of dry soil), but showed no significant effects of inhibition of nitrification on soil nitrogen concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号