首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freshly fallen leaf litter from sweet chestnut (Castanea sativa Mill), oak (Quercus robur L.) and beech (Fagus sylvatica L.) trees were classified into sun, intermediate and shade leaf types and analysed for N, acid detergent fibre, holocellulose, and lignin. In addition, the sugar constituents of structural polysaccharides (mainly from hemicelluloses) were determined after trifluoracetic acid (TFA) hydrolysis, and the phenylpropanoid (PPD) derivatives of lignin after alkaline CuO oxidation. The litters were decomposed in laboratory microcosms for 2 years. Decomposition rates were initially rapid and then plateaued, but differences in mass losses for the leaf litter categories, and between the three species, were significant at 6, 12, 18 and 24 months. Mean mass losses after 24 months were 49.6% for chestnut, 40.4% for oak and 26.3% for beech. Mean losses for chestnut, oak and beech litter categories were 48.6%, 38.2% and 24.6%, respectively, for sun leaves, and 51.0%, 44.5% and 28.5%, respectively, for shade leaves. Initial lignin concentrations showed a negative correlation with mass losses over the first 6 months but initial acid detergent fibre was a better predictor of decomposition rates after 24 months. Within species, however, total extractable sugars and PPD concentrations reflected differences in decomposition rates between the different categories of leaf types. The analysis for specific carbohydrates and lignin derivatives improved the resolution of litter quality characterisation but did not explain the observed patterns of decomposition in long-term laboratory incubations. It is suggested that these may be affected by influence of the culture conditions on the composition of fungal communities.  相似文献   

2.
Leaf litters from beech (Fagus orientalis Lipsky.) and oak (Quercus robur L.), and needle litters from fir (Abies nordmanniana Spach.) and pine (Pinus sylvestris L.) trees were collected from north-facing site and south-facing site and at three slope positions (top, middle and bottom) on each aspect that varied in soil chemical characteristics (soil pH, cation exchange capacity and base saturation). The litters were analysed for initial total carbon, nitrogen, acid detergent fibre, lignin and cellulose concentrations. Nitrogen, acid detergent fibre and lignin concentrations and carbon:nitrogen and lignin:nitrogen ratios varied significantly within and between species according to soil chemical characteristics on aspects and slope positions. Litter decomposition was studied in the field using the litterbag technique. The litters were placed on two aspects and at three slopes on each aspect in October 2001, and were sampled every 6-month for 2 years. The main effects of aspect, species and slope position on decomposition rates were all statistically significant. Oak leaf litter showed highest decomposition rates, followed by pine, fir and beech litter, and the litters placed on north-facing site decomposed faster than those on the south-facing site. The litters placed at the top slope position decomposed slower than at those at either the bottom or middle positions. Initial lignin concentrations explained most of the variation in decomposition rates between species, and within species for the aspects and the slope positions, but the explained variance showed differences between aspects and slope positions. This result illustrates the important point that litter quality may define the potential rates of microbial decomposition but these are significantly influenced by the biotic and abiotic environment in which decomposition takes place.  相似文献   

3.
Paul van Hooff 《Geoderma》1983,31(3):195-204
In a mixed oak—beech forest in the Keuper region of Luxembourg, large parts of the forest floor are free of litter in the spring and summer months. At these sites splash erosion and erosion by overland flow can take place. Of the causes for the origin of the bare soil surface in this forest, leaf litter breakdown by earthworms, especially Lumbricus terrestris (L), is the most important. This earthworm collects leaves from the surface and pulls them into its hole. An investigation of the variables that determine the presence of earthworms and the growth of the litter-free area was carried out in 1978 and 1979.Statistical analysis of the data showed that the food-supply for Lumbricus terrestris was the most important factor in determining the pattern of bare soil exposed on the floor. The presence of hawthorn (Crataegus Laevigata) and absence of beech (Fagus sylvatica) have a positive influence on the presence of Lumbricus terrestris and the yearly maximum of bare soil surface.  相似文献   

4.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

5.
Humus changes after introduction of beech and oak into Scots‐pine monocultures Medium‐ and long‐term (16 to 83 years) effects of an introduction of broadleaf‐tree species (Common beech [Fagus sylvatica] and European‐Sessile Oak [Quercus robur/petraea]) into mature Scots‐pine (Pinus sylvestris) stands on humus type and chemical properties of the Oh layer (pH value, base saturation, C : N ratio) were studied on 16 sites in Bavaria/Germany. The sites investigated covered a large range with respect to elevation, climate, parent material, and soil type. At most sites, the introduction of beech resulted in a significant change of the soil humus type from biologically inactive humus types to more active ones. The strongest changes occurred on the poorest sites, where forest floors under pure pine were particularly biologically inactive. In most cases, the changes in humus type were accompanied by significant increases in the pH value and the base saturation and significant decreases in the C : N ratio of the Oh layer. However, the latter effect was not noticed at most sites with initial C : N ratios higher than 30. In contrast to beech, the introduction of oak did not result in a systematic change of the humus type, the pH value, or the base saturation of the Oh layer. In spite of the considerable change of humus type under beech to biologically more active types, the introduction of broadleaf trees did not result in a systematic change of the thickness or the mass of the forest floor. A decrease in the mass of the Of layer was compensated by an increase of the Oh‐layer mass. All studied sites considered, the introduction of broadleaf trees into Scots‐pine monocultures resulted on average in an 8% decrease of the total amount of organic carbon (Corg) in the forest floor; the Corg amount in the uppermost 10 cm mineral soil increased by 9%. At 35% of all investigated sites, broadleaf tree introduction resulted in increased (+5% to +18%) topsoil (forest floor and uppermost 10 cm mineral soil) Corg stocks. At 30% of the sites, the stock changes were less than ±5%, and on 35% of all sites, soil Corg stocks decreased by –5% to –36%. The average change in the topsoil Corg stock for all studied sites was –5%. The introduction of beech into Scots‐pine monocultures resulted in an ecologically desired translocation of soil organic matter from the forest floor into the mineral topsoil. It is an effective and sustainable silvicultural measure to restore and revitalize acidified, nutrient‐depleted topsoils with biologically inactive humus types.  相似文献   

6.
Lignin is considered to be a crucial component controlling litter decomposition but its role in the production of dissolved organic matter (DOM) from litter is not well understood. Our main objective therefore was to examine the amounts and properties of DOM produced in decomposing litter, with special emphasis on the role of lignin degradation. We exposed litter of five different tree species (Sycamore maple, Mountain ash, European beech, Norway spruce, Scots pine) in litterbags at the soil surface of two neighbouring sites to degradation under field conditions. Litterbags were sampled eight times during 27 months of exposure in the field. We determined mass loss and characterized the lignin fraction by two different methods (van Soest procedure, acid‐detergent lignin: ADL, CuO oxidation). Litter was irrigated in the laboratory and leachates were analysed for dissolved organic carbon (DOC) and characterized by UV and fluorescence spectroscopy. Litter decomposition followed a two‐stage model characterized by initially rapid and then decreasing degradation with time. In the initial phase of litter decomposition, leached amounts of DOM decreased with time and no effects of lignin degradation were found. The contents of ADL in the litter residues and CuO oxidation products suggest larger degradation and oxidation of lignin in beech, spruce and pine litter than in maple and ash litter. The production of DOM from litter with larger lignin degradation increased in the second phase of decomposition, when mass loss exceeded 10–20%. In contrast, DOM produced from litter showing weak lignin degradation (maple, ash) did not increase further in the second phase of decomposition. In the leachates of litter with large lignin degradation (beech, spruce, pine), UV absorbance and fluorescence spectroscopy indicated a larger increase in the contribution of lignin‐derived compounds to DOM with increasing mass loss than for litter species with relatively stable lignin. We conclude that degradation of lignin is an important control on DOM production during the second phase of litter decomposition.  相似文献   

7.
The lipid fractions of leaf or needle litters of ash, beech, birch, larch, oak, pine and spruce generally disappear more rapidly than non-lipid fractions, though the trend may be obscured by extensive fungal colonization as observed in 3-month old oak and ash samples. While the behaviour of most lipid subfractions is approximately species-independent, changes in concentration of material soluble in hot heptane but only sparingly soluble in cold ether are inversely related to bulk disappearance rate. The exceptional behaviour of this fraction in birch litter is perhaps a result of grazing by soil animals being the dominant removal process for birch leaves. Hot acid hydrolysis, presumably of ester linkages to lignin or polysaccharide, liberates a bound lipid fraction composed principally of fatty acids and accounting for up to 32% (in larch) of total lipid. Data for all species reveal rapid liberation and subsequent disappearance of free fatty acids by biochemical processes in the field.  相似文献   

8.
《Applied soil ecology》2009,41(3):401-410
Changes in enzyme activities during litter decomposition provide diagnostic information on the dynamics of decay and functional microbial succession. Here we report a comparative study of enzyme activities involved in the breakdown of major plant components and of other key parameters (microbial respiration, fungal biomass, N, lignin and cellulose contents) in homogeneous leaf litter of Quercus ilex L. incubated in three evergreen oak woods in Southern Italy (Campania), differing for chemical and physical soil characteristics and microclimatic conditions. The results showed that the litter mass loss rates were similar in the three wood sites. Independently of the incubation sites, cellulase, xylanase and peroxydase activities showed seasonal variations with maximum and minimum levels in wet and dry periods, respectively, and this pattern closely matched microbial respiration. Activities of α- and β-amylase, instead, were high at the beginning of incubation and quickly decreased with decomposition progress because their substrate was rapidly depleted. Laccase activity, in contrast, was low at the beginning of incubation but after 6 months it increased significantly. The increase of laccase activity was correlated to an increase in fungal biomass, probably reflecting a major shift in the litter microbial community. As concerns quality changes, N and lignin content did not significantly change during decay. The cellulosic component started being degraded after about 6 months in the litter incubated in two of the three wood sites and from the start of decomposition in the third site. Apart from minor differences in the levels of certain enzyme activities, the data showed that the functional microbial succession involved in the decomposition of Q. ilex leaf litter did not change appreciably in response to differences in soil and microclimatic conditions in the incubation sites.  相似文献   

9.
This study was carried out in alien warmth-tolerant forest plantations of red oak (Quercus rubra), common beech (Fagus sylvatica) and European larch (Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.  相似文献   

10.
Decomposing needles from a Norway spruce forest in southern Sweden were studied for 559 days under laboratory conditions. Falling needles were collected in control (Co) plots and plots that had received 100 kg N ha−1 yr−1 as (NH4)2SO4 for 9 years under field conditions. One of the aims was to determine whether the previously documented low decomposition rate of the N fertilized (NS) needles could be explained by a lower degradation degree of lignin. The lignin content was studied using the alkaline CuO oxidation method, the Klason lignin method and CPMAS 13C NMR spectroscopy. The amounts of cellulose and hemicellulose were also determined.The fertilized needle litters initially decomposed faster than the unfertilized, but later this reaction reversed, so that at the end the mass loss was 45% initial C in the control and 35% initial C in NS. Klason lignin decreased with time in both treatments and overall, the change of Klason lignin mirrored the litter mass loss. No major difference as regards the decomposition of hemicellulose occurred between the treatments, whereas significantly lower concentrations of cellulose were found in NS needles throughout the incubation. The CuO derived compounds (VSC) were somewhat lower in NS needles throughout the decomposition time. Initially, VSC increased slightly in both treatments, which contradicts the Klason lignin data. There was a weak positive relationship (p>0.05) between VSC and Klason lignin. Both vanillyls compounds (V) and cinnamyl compounds (Ci) increased slightly during decomposition, whereas syringyl compounds (S) vanished entirely. The lignin degradation degree, i.e. the acid-to-aldehyde ratio of the vanillyl compounds expressed as (Ac/Al)v, showed no significant effect of treatment. The 13C NMR analyses of the combined samples showed increased content of aromatic C with increasing decomposition time. The carbohydrate content (O-alkyl C) was lower in the fertilized needle litter throughout the incubation time. The alkyl C content tended to increase with decomposition time and N fertilization. The alkyl C/O-alkyl C ratios increased in both treatments during the incubation. The NMR results were not tested statistically.In conclusion, no major difference concerning lignin degradation could be found between the unfertilized and N fertilized needle litter. Thus, the study contradicts the hypothesis that higher amounts of N reduce lignin degradation. The reduced biological activity is probably due to direct N effects on the microorganisms and their decomposing ability.  相似文献   

11.
Decomposition losses from leaves of three evergreen chaparral species, scrub oak (Quercus dumosa), ceanothus (Ceanothus crassifolius), and manzanita (Arctostaphylos glauca), were quantified over a 2-y field exposure using litterbags. Changes in ash-free dry mass, C, and N were monitored at 2- to 6-month intervals at four replicate sites composed of patches of these three chaparral species. Three proximate C fractions were extracted from fresh and decomposing litter samples: polar and non-polar extractives (EXT), acid-solubles (ACID), and acid-insolubles (KLIG). The chemical structure of fresh and decomposed litter was additionally characterized using high-resolution solid-state 13C NMR spectroscopy, while morphological properties were examined by scanning electron microscopy (SEM). After 2 y, the litters had lost between 20.7%±1.2 (Ceanothus) and 35.2%±6.8 (Quercus) of their original ash-free dry mass. The manzanita decomposed at a significantly faster rate than the other two litter types during the first few months of field exposure. Yet, after 2 y, mass loss was greater for the oak. Differences in decomposition rates could not be accounted for based on a single litter quality index. Fresh manzanita exhibited a significantly higher N content, which could explain its initially faster decay rate. Fresh oak litter, on the other hand, had a relatively high ACID and O-alkyl C (O-ALK) content, which may have been responsible for its decay pattern. Fresh ceanothus contained a relatively low KLIG content, yet it decomposed more slowly than the two other species. The solid-state 13C NMR spectra of the ceanothus litter had two peaks characteristic of proanthocyanidins, which likely contributed to the recalcitrance of this litter type. SEM revealed that ceanothus leaf surfaces were left nearly unchanged after field exposure. In comparison, the oak and manzanita leaf surfaces were pitted and covered by microbial growth to the point of being unrecognizable. Taken together, our results indicate that a combination of biological, physical and chemical factors need to be examined to clarify the different decomposition rates and patterns of these three chaparral species.  相似文献   

12.
Due to current predictions for Central Europe that forecast higher frequencies of hot and dry summers, Mediterranean drought-tolerant oak species are being evaluated as future forest trees for German forest sites that are becoming increasingly damaged by water deficit. As a result of planting foreign tree species, the leaf litter composition and thus the food resources of native saprophagous macroarthropods will change, possibly altering primary decomposition processes. Therefore, experiments concerning the acceptance and palatability of introduced versus native litter for native isopods were undertaken. Consumption rates of four native isopod species (Porcellio scaber, Oniscus asellus, Trachelipus rathkii, Trachelipus ratzeburgii) were investigated in laboratory choice tests with introduced (Quercus pubescens, Quercus frainetto, Quercus ilex) and comparable native (Fagus sylvatica, Quercus robur) leaf litter. Litter was characterized by measurement of C/N-ratios and lignin content. Although species-specific preferences of isopods could be observed in the experiments, Mediterranean oak litter was consumed by all investigated species. Furthermore, two isopod species even preferred the leaf litter of the introduced Q. ilex. Compared to native beech or oak litter, litter from these introduced tree species thus apparently do not negatively influence the consumption rates of terrestrial isopods. Possible reasons for the determined preferences are discussed.  相似文献   

13.
Mycobiota and chemical composition of bleached and non-bleached portions were studied on leaf litter of beech (Fagus crenata Blume). By surface sterilization method, two xylariaceous species Xylaria sp. and Geniculosporium sp.1 were dominantly isolated in both portions. Frequency of occurrence of Xylaria sp. was significantly higher in the bleached portion than in the non-bleached portion. In the bleached portion, lignin concentration was lower than in the non-bleached portion, indicating that Xylaria sp. and Geniculosporium sp.1 took part in lignocellulose decomposition in the study site. Effects of organic chemical quality of litters and exogenous mineral nitrogen (NH4 and NO3) addition were then investigated on in vitro lignin decomposition by Xylaria sp. Weight loss of lignin was significantly related to lignocellulose index (LCI) for four litter types tested. In NH4 and NO3 addition treatments, lignin decomposition was completely and partially suppressed, respectively. Xylaria sp. produced bleaching spots on beech leaf litter in vitro in which lignin concentration was lower than in the non-bleached portion. These results suggest that heterogeneous distribution of carbon and nitrogen resources may control lignin decomposition on the litter by the fungus.  相似文献   

14.
土壤微生物群落结构对凋落物组成变化的响应   总被引:9,自引:0,他引:9  
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。  相似文献   

15.
Analytical pyrolysis of a soil profile under Scots pine   总被引:1,自引:0,他引:1  
The chemical properties of pine needle litter cause slow decomposition, which results in an accumulation of highly lignocellulosic material on the forest floor. Decomposition of organic matter is important for the nutrient turnover in pine forests on nutrient-poor soils. We studied the biodegradation of needles in an organic layer focusing on the various stages of lignin degradation by fungi. Samples were obtained from pine needle litter and a stratified organic layer over nutrient-poor sand under a 60-year-old Scots pine (Pinus sylvestris forest stand. Pyrolysis mass spectrometry (PyMS) and pyrolysis gas chromatography mass spectrometry (PyGCMS) were used to characterize the chemical composition of the needles and the soil. The pyrolysis data show that diterpenoid acids are a main component in fresh needles, but rapidly decrease in the organic layer of the soil, as a result of decomposition. The chemical composition of the soil profile is dominated by guaiacyl lignin and polysaccharides from needle litter. The hexose/pentose ratio increases with depth in the soil profile. The partial preservation of hexose polymers is the result of the preferential decomposition of pentose polymers by white-rot fungi, and points to the input of microbially synthesized polysaccharides. Indications for the degradation of guaiacyl lignin are also found in the soil profile. Oxidative reactions by soil fungi result in a shortening of the side chain of the guaiacyl lignin derivatives and an increase of carbonyl and carboxyl groups. These degradational patterns of lignin in the soil profile under Scots pine are similar to those observed in lignin model compounds and wood lignin degraded by fungi under controlled laboratory conditions.  相似文献   

16.
We investigated the influence of three concentrations of water extracts of three leaf litter species (pitch pine, huckleberry and white oak) and a mixture of all litters on the germination of pitch pine seeds and initial seedling growth in a microcosm experiment. All three plant species are important components of the pine barrens ecosystems in New Jersey, where it has been seen that pine seedling recruitment occurs only after stand replacing fire or in disturbed sites, where surface organic soil horizons and leaf litter have been removed. Leaf litter extracts did not influence seed germination, but significantly reduced seedling growth at high concentrations. There was little difference between the leaf litter species in growth suppression. As charcoal is a natural residue on the forest floor following fire, its influence on growth suppression was examined; it has been shown to immobilize polyphenols. Charcoal removed the inhibitory effect of leaf litter extracts and allowed the fertilizer effect of nutrients leached from the leaves to enhance seedling growth, particularly at the higher concentration of litter extract used. Responses to litter extracts were compared to four pure phenolic compounds, catchecol, p-coumaric acid, p-hydroxybenzoic acid and tannic acid. None of these compounds suppressed pine seedling growth, suggesting that these phenolics are not allelopathic to pine seedlings. The results are discussed in the context of fire as a driving factor in these oligotrophic and seasonally dry ecosystems and the interactions between nutrient supply and allelopathic chemistry of different leaf litters.  相似文献   

17.
 This study tested whether urban land use can affect the chemistry and decomposability of Quercus rubra L. (red oak) leaf litter in forests within and near a large metropolitan area. Cities may affect the quality of leaf litter directly through foliar uptake of atmospheric pollutants, and indirectly through alterations in local climate and changes in soil fertility caused by pollutant loads and altered nutrient cycling regimes. Using a microbial bioassay, we tested whether red oak leaf litter collected from urban and suburban forests in and near New York City differed in decomposability from litter of the same species collected from rural forests 130 km from the city. We found that oak litter from the urban forests decayed 25% more slowly and supported 50% less cumulative microbial biomass in a laboratory bioassay than rural litter. Rural litter contained less lignin and more labile material than urban litter, and the amounts of these chemical constituents were highly correlated with the decay rate coefficients and integrated microbial growth achieved on the litter. The specific causes of the variation in litter chemistry are not known. The results of this study suggest that decomposer activity and nutrient cycling in forests near large cities may be affected both by altered litter quality and by altered biotic, chemical and physical environments. The sensitivity of the microbial bioassay makes it useful for distinguishing differences in within-species litter quality that result from natural or anthropogenic variation in the environment. Received: 7 January 1999  相似文献   

18.
Effects of leaf litter of beech (Fagus sylvatica L.) and stinging nettles (Urtica dioica L.) and of the endogeic earthworm species Octolasion lacteum (Örley) on carbon turnover and nutrient dynamics in soil of three beechwood sites on a basalt hill (Hesse, Germany) were investigated in a laboratory experiment lasting for about 1 year. The sites were located along a gradient from basalt (upper part of the hill) to limestone (lower part of the hill) with an intermediate site in between (transition zone). At the intermediate site U. dioica dominated in the understory whereas at the other sites Mercurialis perennis L. was most abundant. The amount and composition of organic matter was similar in soil of the basalt (carbon content 5.9%, C/N ratio 13.8) and intermediate site (carbon content 5.6%, C/N ratio 14.3) but the soil of the intermediate site produced more CO2 (in total +17.5%) and more nitrogen (as nitrate) was leached from this soil (in total +55.6%). It is concluded that the soil of the intermediate site contains a large mobile carbon and nitrogen pool and the formation of this pool is ascribed to the input of U. dioica litter. Leaf litter of U. dioica strongly increased NO3 -N leaching immediately after the litter had been added, whereas nitrogen was immobilized due to addition of beech litter. Despite the very fast initial decomposition of nettle litter, the increase in CO2 production due to this litter material was only equivalent to 20.1% of the amount of carbon added with the nettle litter; the respective value for beech litter was 34.8%. Earthworms altered the time course of carbon and nitrogen mineralization in each of the treatments. In general, earthworms strongly increased mineralization of nitrogen but this effect was less pronounced in soil of the intermediate site (treatments without litter), which is ascribed to a depleted physically protected nitrogen and carbon pool. In contrast, their effect on the total amount of nitrogen mobilized from nettle litter was small. Earthworms significantly reduced CO2 production from soil of the intermediate site (treatments without litter) and it is concluded that earthworm activity contributes to the restoration of the depleted physically protected carbon pool at this site.  相似文献   

19.
Upland oak forests in the ecotone between the eastern deciduous forest and the southern Great Plains are threatened by encroachment of eastern redcedar (Juniperus virginiana) due to fire suppression. The rapid rate of encroachment caused concern about concomitant alterations of site characteristics including nutrient cycling and the soil microbial communities (SMC) that could lead to positive feedbacks reinforcing eastern redcedar encroachment. We studied eight upland oak forests across central and western Oklahoma with stands representing three levels of encroachment: oak-dominated, eastern redcedar-dominated, and an intermediate mixture of both species. We analyzed litter chemistry (carbon, lignin, and nitrogen), soil chemistry (soil organic matter, NH4N, NO3-N, PO4, K, and pH), and profiled soil microbial communities using phospholipid fatty acid analysis (PLFA). Eastern redcedar encroachment was accompanied by reduced litter carbon along with higher levels of arbuscular mycorrhizal (AM) fungi while litter N was lower in mixed stands. However, we detected no change in soil chemistry. Our results indicate eastern redcedar encroachment in these upland oak forests reduced litter quality and altered the SMC through increases in AM fungi, a symbiont associated with eastern redcedar. These alterations may create positive soil–microbial feedbacks by reducing the fitness of the dominant oak species and facilitating rapid increase in eastern redcedar in this threatened, oak-dominated ecosystem.  相似文献   

20.
Predicting litter decay rates in arid systems has proved elusive and sunlight (photodegradation) is a potentially important but poorly understood driver of litter decay in these systems. We placed three litter types (Cynodon dactylon, Larrea tridentata leaves, and L. tridentata twigs) in envelopes whose tops either transmitted all solar radiation, filtered UV-B, filtered all UV, or filtered all UV and visible solar radiation, on the soil surface of the Sonoran Desert and assessed mass loss over 14 months. Regardless of treatment, final mass loss was greatest in C. dactylon litter and least in L. tridentata twig litter, consistent with initial litter characteristics of presumed litter quality; C. dactylon had the lowest lignin concentration and lignin:N, and the highest cellulose:lignin and area:mass. Compared to litter in sunlight, excluding solar UV, or UV-B, slowed mass loss of all 3 litter types, and UV-B appeared more effective than UV-A in photodegradation. The relative contribution of UV photodegradation to mass loss increased with litter age. After 14 months, litter exposed to solar UV lost 1.2 (C. dactylon), 1.3 (L. tridentata twigs) and 1.4 (L. tridentata leaves) times as much mass as litter not exposed to UV radiation. The relative contribution of UV photodegradation to mass loss increased with the initial C:N ratio of litter, but was not related to initial lignin concentration or optical properties (i.e. UV and visible absorbance and transmittance) of litter. Within all litter type by treatment combinations, there was a strong positive correlation between litter mass loss and ash concentration. In some cases, a discontinuity in this relationship was detected, suggesting a threshold ash concentration, above which further mass loss was negligible. We expected these thresholds to be most prevalent in sunlight, because soil films could prevent sunlight from reaching litter and thereby minimize photodegradation. Contrary to expectations, thresholds were more common in shade or UV filter treatments, suggesting that reductions in photodegradation attributable to soil films were not typically responsible. The effect of shading, which likely enhanced microbial degradation via higher relative humidity due to lower temperatures, depended on litter type and time. Compared to litter in sunlight, mass loss of shaded litter was greater over the initial 3 months in all litter types, illustrating that microbial degradation in shade was greater than photodegradation in sunlight. These differences in mass loss between shaded and sunlit litter increased over the 14 month experiment in L. tridentata twigs, declined in L. tridentata leaves, and disappeared within 6 months in C. dactylon, illustrating that the timing of this shift in the dominance of photodegradation versus microbial degradation was highly dependent on litter type. In a second experiment, we reduced microclimate differences among sun and shade treatments, pre-sterilized litter to reduce microbial degradation, and examined the mass loss of young and old and L. tridentata leaf litter after 53 days outdoors. Consistent with our first experiment, mass loss attributable to photodegradation was greater in old than young litter. Unsterilized litter exposed to sunlight (UV and visible) lost 1.3 (young) and 1.5 (old) times as much mass as shaded litter. Pre-sterilized litter exposed to sunlight lost 11.4 (young litter) and 45.9 (old litter) times as much mass as shaded litter. These large differences in pre-sterilized litter were the result of the very small mass loss of shaded litter (≤0.2%), together with modest losses of sunlit litter (<5%). Taken together, our findings suggest that as litter aged, microbial degradation became a weaker driver of mass loss, while photodegradation became stronger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号