首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Declining rates of soil respiration are reliably observed during long-term laboratory incubations. However, the cause of this decline is uncertain. We explored different controls on soil respiration to elucidate the drivers of respiration rate declines during long-term soil incubations. Following a long-term (707 day) incubation (30 °C) of soils from two sites (a cultivated and a forested plot at Kellogg Biological Station, Hickory Corners, MI, USA), soils were significantly depleted of both soil carbon and microbial biomass. To test the ability of these carbon- and biomass-depleted (“incubation-depleted”) soils to respire labile organic matter, we exposed soils to a second, 42 day incubation (30 °C) with and without an addition of plant residues. We controlled for soil carbon and microbial biomass depletion by incubating field fresh (“fresh”) soils with and without an amendment of wheat and corn residues. Although respiration was consistently higher in the fresh versus incubation-depleted soil (2 and 1.2 times higher in the fresh cultivated and fresh forested soil, respectively), the ability to respire substrate did not differ between the fresh and incubation-depleted soils. Further, at the completion of the 42 day incubation, levels of microbial biomass in the incubation-depleted soils remained unchanged, while levels of microbial biomass in the field-fresh soil declined to levels similar to that of the incubation-depleted soils. Extra-cellular enzyme pools in the incubation-depleted soils were sometimes slightly reduced and did not respond to addition of labile substrate and did not limit soil respiration. Our results support the idea that available soil organic matter, rather than a lack microbial biomass and extracellular enzymes, limits soil respiration over the course of long-term incubations. That decomposition of both wheat and corn straw residues did not change after major changes in the soil biomass during extended incubation supports the omission of biomass values from biogeochemical models.  相似文献   

2.
 This paper reports the effect of the addition of the organic fraction of municipal solid waste at two different rates on the microbiological and biochemical properties of an arid soil after 8 years. The vegetation that appeared spontaneously just after the amendment was still present 8 years later. The organic matter fractions were higher in the amended soil than in the control soil. Amended soil showed higher values of microbial biomass C, soil basal respiration and dehydrogenase activity than control soil, which reached values near to those of the natural soils in the area. The organic amendment had a positive effect on the activity of enzymes related with C, N, P cycles, particularly when the amendment was at the highest dose. This effect could be also observed on the activity of extracted enzymes. The results indicated that the addition of urban waste could be a suitable technique with which to restore soil quality. Received: 3 July 1998  相似文献   

3.
半干旱退化土壤中施入城市垃圾的长期效应研究   总被引:1,自引:0,他引:1  
The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity;microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, β-glucosidase, and N-α-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg-1 soil with the highest MSW doses, compared to 4.30 g kg-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.  相似文献   

4.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

5.
四种农业土壤上生物炭-土壤的交互效应   总被引:1,自引:0,他引:1  
Soils in south-western Australia are highly weathered and deficient in nutrients for agricultural production. Addition of biochar has been suggested as a mean of improving soil C storage, texture and nutrient retention of these soils.~Clay amendment in sandy soils in this region is a management practice used to improve soil conditions, including water repellence.~In this study a woody biochar (Simcoa biochar) was characterised using scanning electron microscopy before, and four weeks after, it was incorporated into each of four soils differing in clay content and organic matter. Scanning electron microscopy of Simcoa biochar after incubation in soil showed different degrees of attachment of soil particles to the biochar surfaces after 28 d. In addition, the effects of three biochars, Simcoa biochar, activated biochar and Wundowie biochar, on soil microbial biomass C and soil respiration were investigated in a short-term incubation experiment. It was hypothesised that all three biochars would have greater potential to increase soil microbial activity in the soil that had higher organic matter and clay. After 28-d incubation in soil, all three biochars had led to a higher microbial biomass C in the clayey soil, but prior to this time, less marked differences were observed in microbial biomass C among the four soils following biochar application.  相似文献   

6.
 The effects of growing trees in combination with field crops on soil organic matter, microbial biomass C, basal respiration and dehydrogenase and alkaline phosphatase activities were studied in soils under a 12-year-old Dalbergia sissoo (a N2-fixing tree) plantation intercropped with a wheat (Triticum aestivum) – cowpea (Vigna sinensis) cropping sequence. The inputs of organic matter through D. sissoo leaf litter increased and crop roots decreased with the increase in tree density. Higher organic C and total N, microbial biomass C, basal soil respiration and activities of dehydrogenase and alkaline phosphatase were observed in treatments with tree-crop combination than in the treatment without trees. Soil organic matter, microbial biomass C and soil enzyme activities increased with the decrease in the spacing of the D. sissoo plantation. The results indicate that adoption of the agroforestry practices led to an improved organic matter status of the soil, which is also reflected in the increased nutrient pool and microbial activities necessary for long-term productivity of the soil. However, tree spacing should be properly maintained to minimize the effects of shading on the intercrops. Received: 21 February 1997  相似文献   

7.
The objectives of this work were to (a) investigate the short-term effects of applications of mineral fertilizer, municipal solid waste (MSW) compost, and two sewage sludges (SSs) subjected to different treatments (composting and thermal drying) on microbial biomass and activity of soil by measuring microbial biomass C, adenosine 5′-triphosphate content, basal respiration, and dehydrogenase, catalase, urease, phosphatase, β-glucosidase, and N-α-benzoyl-l-argininamide-hydrolyzing activities and (b) explore the relationships between soil microbiological, biochemical, and chemical properties and wheat yields under semiarid field conditions by principal component analysis. The additions of MSW compost, SS compost, and thermally dried SS did not affect significantly soil microbial biomass, as compared to mineral fertilization and no amendment. However, microbial activity increased in organically amended soils, probably due to the stimulating effect of the added decomposing organic matter. Changes in soil microbiological and biochemical properties showed no significant relationships with wheat yields, probably because plant growth was primarily water-limited, as typically occurs in semiarid regions.  相似文献   

8.
不同培肥管理措施对土壤微生物生态特征的影响   总被引:38,自引:0,他引:38  
本文研究了厩肥区、秸杆区、化肥区和无肥对照区四种不同培肥管理措施对土壤微生物生态特征的影响,结果表明,施入厩肥、化肥或秸杆还田均能明显增加土壤微生物生物量及呼吸量;土壤微生物生物质量、土壤呼吸及代谢商等微生物指标均与土壤有机质的变化呈相同的变化趋势;BIOLOG生态盘测试亦揭示了培肥管理措施能明显影响土壤微生物的群落结构。  相似文献   

9.
Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems.Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions.The objective of this study was to assess the effects of different soil managements,in terms of soil amendment types and frequency of application,on fungistasis.For this purpose,a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i.e.,glucose,alfalfa straw and wheat straw).Thereafter,the fungistasis response was assessed on four fungi (Aspergillus niger,Botrytis cinerea,Pyrenochaeta lycopersici and Trichoderma harzianum).Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method.Results showed that irrespective of the fungal species and amendment types,frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration.The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities.This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.  相似文献   

10.
Carbon fluxes in sodic and saline soils were investigated by measuring the soil microbial biomass (SMB) and soil respiration rates under controlled conditions over 12 weeks. Gypsum (10 t/ha) and organic material, as kangaroo grass (10 t/ha), were incorporated in an acidic and an alkaline saline–sodic soils. Cumulative soil respiration rates were lowest in the sodic and saline soils without amendment, while the highest rates were found in those soils that had organic material addition. The addition of gypsum decreased the cumulative respiration rates in the 0–5 cm layer compared to the addition of organic material and the addition of organic material and gypsum. Similarly, the SMB was lowest in the sodic and saline soils without amendment and highest in the soils which had organic material addition, while the effects of gypsum addition were not significant. The low levels of respiration and SMB were attributed to the low soil organic carbon (SOC) levels that result from little or no C input into the soils of these highly degraded landscapes as the high salinity and high sodicity levels have resulted in scarcity or absence of vegetation. Following the addition of organic material to the sodic and saline soils, SMB levels and respiration rates increased despite adverse soil environmental conditions. This suggests that a dormant population of salt-tolerant SMB is present in these soils, which has become adapted to such environmental conditions over time and multiplies rapidly when substrate is available.  相似文献   

11.
Application of byproduct amendment containing silicon, calcium, magnesium, and potassium has been shown to improve acidic soil quality in Jiaodong Peninsula of China. In this study, we explored the influences of amendment supplemented with and without urea on the physicochemical properties as well as microbial activities of acidic soil from Jiaodong over a 120-day period. With the amendment, the electronic conductivity and pH of soils changed. The amendment treatment significantly reduced inorganic nitrogen content and increased microbial biomass nitrogen content during the whole incubation period. The microbial biomass, activities of phenol oxidase and dehydrogenase were increased by the addition of amendments, while the soil respiration, catalase and urease activity were declined. Our results indicated that application of byproduct amendment could improve the chemical and biological properties of the acidic orchard soils from Jiaodong over a short time period of investigation.  相似文献   

12.
Ecological soil functions are protected in Germany. Thus, for the sustainable use of urban soil resources data on the function of soils to serve as a habitat are required. Soil microbial biomass and activities were studied in two surface horizons in two consecutive years at nine sites in Stuttgart, Germany, differing in land use. Microbial biomass (chloroform‐fumigation extraction, substrate‐induced respiration) and microbial activities (potential N mineralization, potential ammonium oxidation, and enzyme activities of dehydrogenase, urease, arylsulfatase, and phosphatase) were determined in 2001 and 2002. DIN/ISO standard methods were applied as far as they were available. Furthermore, soil chemical properties were determined in the 2001‐samples. Large differences in chemical and microbiological properties among surface horizons were found. Concentrations of microbial biomass and microbial activities were, however, often comparable to agricultural or forest surface soils. The lowest microbial biomass and activities were observed at a highly disturbed railway area where vegetation was missing and total organic C (TOC) had been altered by anthropogenic organic particles. In contrast, microorganisms were promoted at vegetated sites and where organic impurities were negligible. As TOC was altered by obscure organic matter, total N (TN) and not TOC closely correlated with soil microbiological properties. Biomass and activity generally decreased with depth, but mixing of organic matter resulted in more uniform depth distribution of microbial properties in one garden soil. In 2002, microbial biomass and activity were often lower compared to 2001, but interpretation of this difference hampered as the number of samples taken was probably not sufficient to address the spatial variability in soil properties. Additional studies are needed to develop simple and cost‐effective procedures for the evaluation of ecological quality of urban soils by combined efforts of city planners and soil scientists.  相似文献   

13.
Biochars are adsorptive solids potentially of benefit to soil microbes by providing improved nutrient retention, a carbon substrate and contaminant adsorption. A 28-day incubation experiment gauged the interactive effects of biochar application and contaminants on the microbial biomass and respiration of a sandy loam soil. Soil was amended with 250 mg/kg phenol or p-nitrophenol (two toxic but nevertheless biodegradable organic contaminants) or 50 mg/kg cadmium or copper. Biochar application generally caused increased microbial respiration and biomass relative to non-amended controls. Of the heavy metal-amended soils, Cu effected significant reductions in microbial biomass carbon and basal respiration, which were improved with concurrent biochar amendment. The biochar’s functional groups are likely to have mitigated the metals’ negative effects via complexation and sorption, while the soil’s proportion of negative pH-dependent sites was increased by the pH rise induced by biochar application, allowing more cationic retention. Organic contaminant-spiked soils had higher microbial biomass-specific respiration without biochar amendment, indicating that surviving microbes utilised the compounds and necromass as substrates. Paranitrophenol proved to be particularly toxic without biochar application, causing marked reductions in the microbial quotient and biomass carbon. Remarkably, concurrent biochar and pNP application led to hugely increased microbial biomass carbon and nitrogen, significantly higher than those in contaminant-free replicates. It is likely this arose from biochar sorbing the contaminant and allowing its microbial utilisation as a carbon and nitrogen source, stimulating growth. Biochar application is a highly promising strategy for reducing the soil microbial toxicity of heavy metals and aromatic organic contaminants, particularly p-nitrophenol.  相似文献   

14.
  目的  土壤微生物是土壤健康的敏感“指示器”,但不同的土壤微生物类群对连续施用有机肥和石灰的响应规律及不同指标的敏感性仍不明确。  方法  本文选取中亚热带双季稻区的紫泥田作为研究对象,研究连续5年施用有机肥或石灰后,土壤微生物“黑箱指标”(微生物生物量碳氮、微生物熵和土壤呼吸速率)和土壤活体微生物(PLFAs)组成的响应规律与差异。  结果  与对照相比,连续施用有机肥后,土壤微生物生物量碳(MBC)、氮(MBN)含量和土壤呼吸速率分别提高37%、28%和44% ~ 59%,微生物多样性也显著提高,土壤细菌结构发生改变,尤其是革兰氏阴性菌(G?)的PLFAs绝对量提高了100%,但真菌类群的响应不敏感。相反,连续施用石灰5年后,土壤微生物生物量碳、氮含量均呈下降趋势,微生物熵和土壤呼吸速率分别降低11%和26% ~ 52%,微生物多样性显著降低,细菌、放线菌和绝大多数真菌类群PLFAs绝对量下降30% ~ 58%。相关性分析结果表明,土壤有机质含量与土壤微生物总PLFAs和细菌PLFAs含量呈显著正相关关系;而土壤pH仅与Simpson多样性指数呈显著正相关关系。施有机肥显著提高了土壤有机质含量进而导致细菌MBC、MBN、G?和土壤呼吸速率显著增加;而施石灰后土壤微生物群落结构及活性降低与土壤pH有关。  结论  连续5年施用有机肥、石灰后,土壤微生物指标分别表现为正面、负面响应。与“黑箱指标”相比,某些特定微生物类群(如G?)的敏感性指数值更高,在土壤健康评价中极具应用潜力。  相似文献   

15.
The conversion of secondary forests to larch plantations in Northeast China has resulted in a significant decline in soil available nitrogen (N) and phosphorus (P), and thus affects plant productivity and ecosystem functioning. Microbes play a key role in the recycling of soil nutrients; in turn, the availability of soil N and P can constrain microbial activity. However, there is little information on the relationships between available soil N and P and the microbial biomass and activity in larch plantation soil. We studied the responses of soil microbial respiration, microbial biomass and activity to N and P additions in a 120-day laboratory incubation experiment and assessed soil microbial properties in larch plantation soil by comparing them with the soil of an adjacent secondary forest. We found that the N-containing treatments (N and N + P) increased the concentrations of soil microbial biomass N and soluble organic N, whereas the same treatments did not affect microbial respiration and the activities of β-glucosidase, N-acetyl-β-glucosaminidase and acid phosphatase in the larch plantation. In addition, the concentration of microbial biomass P decreased with N addition in larch plantation soil. In contrast, N and N + P additions decreased microbial respiration, and N addition also decreased the activity of N-acetyl-β-glucosaminidase in the secondary forest soil. The P treatment did not affect microbial respiration in either larch plantation or secondary forest soils, while this treatment increased the activities of β-glucosidase and acid phosphatase in the secondary forest soil. These results suggested that microbial respiration was not limited by available P in either secondary forest or larch plantation soils, but microbial activity may have a greater P demand in secondary forest soil than in larch plantation soil. Overall, there was no evidence, at least in the present experiment, supporting the possibility that microbes suffered from N or P deficiency in larch plantation soil.  相似文献   

16.
In an intensely cultivated soil in southern Italy, the effects of municipal waste compost on soil activities (basal respiration, β-glucosidase, and fluorescein diacetate (FDA) hydrolysis), Biolog functional diversity, pH, and electrical conductivity (EC) were estimated in a short period following amendment. Treatment with compost at 30 t ha?1 (dry matter) was compared to mineral fertilization and untreated soil. In these poor soils, organic amendment allowed the rapid recovery of an active and biodiverse soil community. While the addition of compost increased all microbial activities and EC, the pH did not change. Conversely, metabolic activity that was positively correlated to FDA hydrolysis rate initially was enhanced by compost but decreased with time and disappeared at the end of the incubation. Results indicated that waste compost amendments affected microbial activities, both at global and functional levels, favoring a rapid return of biological factors of fertility.  相似文献   

17.
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates.We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favoring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter.Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51% in the low input to 20%. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.  相似文献   

18.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

19.
不同相伴阴离子对镉污染红壤的微生物活性影响   总被引:4,自引:1,他引:4  
滕应  黄昌勇  姚槐应  龙健 《土壤学报》2003,40(5):738-744
通过外加醋酸镉和氯化镉的室内培养试验研究了相伴阴离子对镉污染红壤微生物活性的影响。结果表明 ,在相同镉浓度下相伴OAc- 对镉污染红壤的微生物生物量碳、基础呼吸和代谢商以及脲酶和酸性磷酸酶活性的抑制作用大于相伴Cl- ,统计分析显示 ,镉相伴OAc- 与Cl- 除对红黄泥的代谢商未达明显影响外 ,对供试红壤的其它微生物活性指标均达到显著差异 (p <0 0 5 )。用醋酸镉处理的土壤有效态镉含量明显高于氯化镉处理。钾盐试验结果表明 ,相伴OAc- 与Cl- 对土壤微生物活性没有产生明显抑制作用 ,OAc- 甚至还存在一定的刺激效应。可见 ,相伴OAc- 对镉污染红壤的微生物毒害作用大于相伴Cl- ,其直接原因可能是用醋酸镉处理的生物有效性镉明显高于氯化镉处理所致。  相似文献   

20.
The major objectives of this study were to determine the influence of grazing on the soil microbial biomass and activity in semiarid grassland and shrubland areas and to quantify the canopy effect (the differences in soil microbial biomass and activities between soils under plant canopies and soils in the open between plants). We also quantified changes in microbial biomass and activity during seasonal transition from dry to moist conditions. Chronosequences of sites withdrawn from grazing for 0, 11, and 16 years were sampled in a grassland (Bouteloua spp.) area and a shrubland (Atriplex canescens) area on and near the Sevilleta National Wildlife Reguge in central New Mexico, USA. Samples were obtained from beneath the canopies of plants (Yucca glauca in the grassland and A. canescens in the shrubland) and from open soils; they were collected three times during the spring and summer of a single growing season. Organic C, soil microbial biomass C, and basal respiration rates (collectively called the soil C triangle) were measured. We also calculated the microbial: organic C ratio and the metabolic quotient (ratio of respiration to microbial C) as measures of soil organic C stability and turnover. Although we had hypothesized that individual values of the soil C triangle would increase and that the ratios would decrease with time since grazing, differences in microbial parameters between sites located along the chronosequences were generally not significant. Grazing did not have a consistion effect on organic C, microbial C, and basal respiration in our chronosequences. The microbial: organic C ratio and the metabolic quotient generally increased with time since grazing on the shrubland chronosequence. The microbial: organic C ratio decreased with time since grazing and the metabolic quotient increased with time since grazing on the grassland chronosequence. The canopy effect was observed at all sites in nearly all parameters including organic C, microbial C, basal respiration, the microbial: organic C ratio, and the metabolic quotient which were predominantly higher in soils under the canopies of plants than in the open at all sites. Microbial biomass and activity did not increase during the experiment, even though the availability of moisture increased dramatically. The canopy effects were approximately equal on the shrubland and grassland sites. The microbial: organic C ratios and the metabolic quotients were generally higher in the shrubland soils than in the grassland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号