首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil microbial biomass interactions influencing the mineralisation of N in biosolids‐amended agricultural soil were investigated under field conditions in two soil types, a silty clay and a sandy silt loam, with contrasting organic matter contents. Soil treatments included: dewatered raw sludge (DRAW); dewatered and thermally dried, mesophilic anaerobically digested biosolids (DMAD and TDMAD, respectively); lime‐treated unstabilised sludge cake (LC); and NH4Cl as a mineral salt control for measuring nitrification kinetics. Soil mineral N and microbial biomass N (MBN) concentrations were determined over 90 days following soil amendment. Despite its lower total and mineral N contents, TDMAD had a larger mineralisable pool of N than DMAD, and was an effective rapid release N source. Increased rates of mineralisation and nitrification of biosolids‐N were observed in the silty clay soil with larger organic matter content, implying increased microbial turnover of N in this soil type compared with the sandy silt loam, but no significant difference in microbial immobilisation of biosolids‐N was observed between the two soil types. Thus, despite initial differences observed in the rates of N mineralisation, the overall extent of N release for the different biosolids tested was similar in both soil types. Therefore, the results suggest that fertiliser guidelines probably do not need to consider the effect of soil type on the release of mineral N for crop uptake from different biosolids products applied to temperate agricultural soils.  相似文献   

2.
This study was carried out to quantify the priming effect of biuret on native soil nitrogen (N) mineralisation during a 112-day incubation. Addition of biuret (100 mg 15N-labelled biuret kg−1 soil) increased the turnover rate constant of soil organic matter and had a positive priming effect on native soil N mineralisation in two soils. The additional mineralisation was 0.65% of the total soil N (equivalent to 47.1 kg N ha−1) in a sandy loam soil and 0.62% of the soil N (equivalent to 46.5 kg N ha−1) in a silt loam soil.  相似文献   

3.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

4.
The soil conditioners anionic polyacrylamide (PAM) and dicyandiamide (DCD) are frequently applied to soils to reduce soil erosion and nitrogen loss, respectively. A 27‐day incubation study was set up to gauge their interactive effects on the microbial biomass, carbon (C) mineralization and nitrification activity of a sandy loam soil in the presence or absence of maize straw. PAM‐amended soils received 308 or 615 mg PAM/kg. Nitrogen (N)‐fertilized soils were amended with 1800 mg/kg ammonium sulphate [(NH4)2SO4], with or without 70 mg DCD/kg. Maize straw was added to soil at the rate of 4500 mg/kg. Maize straw application increased soil microbial biomass and respiration. PAM stimulated nitrification and C mineralization, as evidenced by significant increases in extractable nitrate and evolved carbon dioxide (CO2) concentrations. This is likely to have been effected by the PAM improving microbial conditions and partially being utilized as a substrate, with the latter being indicated by a PAM‐induced significant increase in the metabolic quotient. PAM did not reduce the microbial biomass except in one treatment at the highest application rate. Ammonium sulphate stimulated nitrification and reduced microbial biomass; the resultant acidification of the former is likely to have caused these effects. N fertilizer application may also have induced short‐term C‐limitation in the soil with impacts on microbial growth and respiration. The nitrification inhibitor DCD reduced the negative impacts on microbial biomass of (NH4)2SO4 and proved to be an effective soil amendment to reduce nitrification under conditions where mineralization was increased by addition of PAM.  相似文献   

5.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

6.
The herbicide glyphosate, supplied as Roundup (Monsanto Canada Inc.), was tested for effects on nitrification in four soils from Atlantic Canada. These included a sandy loam (pH 6.8), two silt loam (pH 6.4 and 5.8) agricultural soils and a clay loam forest soil (pH 3.5). Glyphosate was tested at normal field exposure rates (FR) and levels up to 200 times higher. FR values ranged from 19.83 to 29.26 ppm (jig glyphosate g?1 soil). Glyphosate had no deleterious effects on nitrification in any soil when tested at FR concentrations. In the sandy loam soil nitrification was significantly stimulated at a glyphosate level 50 times higher than FR. With this soil and one of the silt loam soils (pH 6.4) glyphosate levels of 100 times FR and higher were required for a significant inhibition of nitrification. With the other silt loam soil (pH 5.8) glyphosate significantly inhibited nitrification at concentrations 10 times FR and higher. Nitrification in the acidic forest soil was very low and accurate toxicity data could not be obtained. The EC50 of glyphosate towards nitrification in soil ranged from 1435 to 2920 ppm, which corresponds to exposure levels from 67 to 150 times higher than recommended field application rates. The use of glyphosate in agriculture and forestry should have no toxic effects on nitrification in soil.  相似文献   

7.
Two soils, one a sandy loam and the other of relatively high clay content, were incubated with [14C(U)]gtucose and [15N](NH4)2SO4 for 101 days, either under continuously moist conditions, or with intermittent drying of soils. Rates of evolution of 14CO2, decline in residual organic 14C, and net immobilization and mineralization of N and 15N in the sandy loam soil were more rapid than in the clay soil. First order decay rates for the decomposition of residual 14C, after 10 days, were consistently twice as fast in the sandy loam soil. By contrast, the efficiency with which glucose was utilized within the first few days, and the amounts of C, 14C, N and 15N present as soil biomass throughout the incubation, were greater in the clay soil than in the sandy loam. Biomass 14C as a percentage of residual organic 14C, was consistently 1.5 times greater in the clay soil. Compared with soils held continuously moist, soils which were intermittently dried and remoistened contained smaller amounts of isotope-labelled biomass C and N, but overall similar amounts of total residual organic 14C and 15N. Remoistening of dried soils caused a temporary (4 days) flush in C and N mineralization rates.A simulation model describes C and N behaviour in the two soils. Three features of the model are proposed to expain short-term differences between soils in the rates of C and N turnover, viz. the clay soil (a) has a greater capacity to preserve biomass C and N (b) holds a higher proportion of microbial decay products in the near vicinity of surviving cells, and, to a lesser extent, (c) utilizes glucose and metabolic products more efficiently for biosynthetic reactions.  相似文献   

8.
An incubation experiment was conducted to determine the response of soil microbial biomass and activity to salinity when supplied with two different carbon forms. One nonsaline and three saline soils of similar texture (sandy clay loam) with electrical conductivities of the saturation extract (ECe) of 1, 11, 24 and 43 dS m?1 were used. Carbon was added at 2.5 and 5 g C kg?1 (2.5C, 5C) as glucose or cellulose; soluble N and P were added to achieve a C/N ratio of 20 and C/P ratio of 200. Soil microbial activity was assessed by measuring CO2 evolution continuously for 3 weeks; microbial biomass C and available N and P were determined on days 2, 7, 14 and 21. In all soils, cumulative respiration was higher with 5C than with 2.5C and higher with glucose than with cellulose. Cumulative respiration was highest in the nonsaline soil and decreased with increasing EC, whereas the decrease was gradual with glucose, there was a sharp drop in cumulative respiration with cellulose from the nonsaline soil to soil with EC11 with little further decrease at higher ECs. Microbial biomass C and available N and P concentrations were highest in the nonsaline soil but did not differ among the saline soils. Microbial biomass C was higher and available N was lower with 5C than with 2.5C. The C form affected the temporal changes of microbial biomass and available nutrients differentially. With glucose, microbial biomass was highest on day 2 and then decreased, whereas available N showed the opposite pattern, being lowest on day 2 and then increasing. With cellulose, microbial biomass C increased gradually over time, and available N decreased gradually. It is concluded that salinity reduced the ability of microbes to decompose cellulose more than that of glucose.  相似文献   

9.
 A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way. Received: 19 July 1999  相似文献   

10.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

11.
The kinetics of N immobilisation/mineralisation for cellulose-, glucose- and straw-amended sandy soils were investigated in a series of laboratory incubations. Three Scottish soils expected to exhibit a range of biological activity were used: a loamy sand, intensively cropped horticultural soil subject to large inputs of inorganic fertilisers and pesticides (Balmalcolm - pH 7.2, organic matter 3.3%); a sandy loam soil highly enriched with organic manures and used for organic vegetable production (Strathmiglo - pH 7.1, organic matter 7.3%); and a loamy sand soil of low fertility in a zero-grazing, low intensity organic ley-arable rotation (Aldrochty pH 6.0, organic matter 5.0%). Incubations of soils with 1,000 mg cellulose-C kg-1 soil at 8°C, showed peak N immobilisation of 71Lj, 92Lj and 65ᆣ mg N g-1 added C for the Balmalcolm (after 34 days), Strathmiglo (after 34 days) and Aldrochty soils (after 63 days). The N remineralisation by the end of the incubation (>300 days) was 0, 50 and 22 mg N g-1 cellulose-C in the Balmalcolm, Strathmiglo soil and Aldrochty soils, respectively. Only about 30% of the N immobilisation could be explained by soil microbial biomass N accumulation (much less than expected from model simulations). The C/N ratio of the extra microbial biomass was quite wide (19). Bacterial, protozoan and nematode biomass accounted for only 18%, 0.1% and 0.5% of the extra C immobilisation, respectively. These data suggest that fungal biomass growth and deposition of recalcitrant fungal metabolites are the main sinks for the N immobilised. With 1,000 mg glucose-C kg -1 added to the Balmalcolm soil, about 75 mg N g-1 added C were immobilised after 6 days. Under less well aerated conditions at 15°C, immobilisation of only 10-20 mg N g-1 added cellulose C took place in 2-4 weeks, but soluble organic C increased greatly. The N remineralised after 4-6 weeks.  相似文献   

12.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

13.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

14.
《Soil biology & biochemistry》2001,33(4-5):633-638
An incubation study in closed static microcosms was performed to elucidate Zn effects on N mineralisation in relation to other microbial activities and biomass in a sandy soil. Sewage sludge equivalent to 25 t ha−1 was enriched with five different rates of Zn to add concentrations between 50 and 800 μg Zn g−1 soil. All microbial indices were increasingly depressed with increasing Zn concentration of the sewage sludge, but they were affected with different intensity: Zn had especially large effects on CO2 production and qCO2, moderate effects on N mineralisation and relatively small effects on protease activity, biomass C and arginine ammonification.  相似文献   

15.

Purpose

Sewage sludge and biosolid application to land is a common approach to fertilise soils, but sewage-derived contaminants like the antimicrobial agent triclosan, and heavy metals zinc and copper, are known to affect soil microbial communities. In this study, the tolerance to triclosan was examined for soil microbial communities chronically pre-exposed to one of two heavy metals (Cu or Zn) and the antimicrobial triclosan. This was investigated in two different soil types.

Materials and methods

The impacts of chronic exposure of copper, zinc and triclosan as individual compounds or in mixtures on soil microbial communities were assessed in soils collected from two sites. The first was a Horotiu sandy loam with ample carbon and nitrogen levels and the second was a Templeton silt loam with very low carbon and nitrogen levels. The end points used to characterise the response of the soil microbial community were biomass, metabolic activity and pollution-induced community tolerance (PICT) to triclosan (using Biolog EcoPlates). In addition, metabolic activities for individual substrates were examined and those that significantly changed with the applied treatments were identified.

Results and discussion

Exposure to mixtures of both triclosan and copper in the Horotiu sandy loam reduced microbial biomass, increased metabolic activity and reduced microbial tolerance to triclosan. The decrease in soil microbial tolerance correlated with an increased metabolic activity for N-acetyl-d-glucosamine providing a potential link between triclosan exposure and nitrogen mineralisation. Exposure to both triclosan and high zinc levels decreased microbial biomass in the Horotiu sandy loam but did not have an effect on microbial tolerance to triclosan. In the finer-textured and less fertile Templeton soil, microbial tolerance to triclosan and the microbial biomass were not impacted by copper/triclosan or zinc/triclosan mixtures.

Conclusions

Mixture effects could become a cause for concern when soil microbial communities are exposed to triclosan in fertile soils with copper concentrations in excess of 50 mg kg?1 and could be especially important in the more coarsely textured soils. Current regulations for soil contaminants only consider the risk and effects of single contaminants. Greater protection of soil resources could result from considering mixture effects and soil types.
  相似文献   

16.
Dissolved organic matter (DOM) has been recognised as a key carbon and nitrogen (N) pool involved with soil-plant-microbe interactions. Yet few studies have quantified this contribution in agricultural soils. In this study we leached DOM from a sandy loam and sandy clay loam soil under either grassland or arable cropping. Two weeks after DOM removal microbial respiration from soils was not altered. However, a significant (P<0.05) decline in microbial biomass-N, potentially mineralizable-N, gross N mineralization and gross nitrification occurred after leaching. This data illustrate that whilst DOM is a small component of the soil OM it contributed up to 25% of microbial N supply within these agricultural soils.  相似文献   

17.
Most investigations into the effects of changing soil pH on microbial activity use, from necessity, soils taken from different sites so that soil physical and chemical properties are confounded. Studies along continuous gradients of soil pH within a single soil type are rare, simply because so few exist, in UK or even worldwide. Here we report measurements of mineralisation of native organic matter and added arginine along a continuous soil pH gradient (range about pH 3.7–8.3) of a UK silty clay loam soil (Chromic Luvisol or Typic Paleudalf). The soil has been maintained under constant management for more than 100 years, with winter wheat sown annually. The soil NH4+-N concentration was maximal at the lowest pH (pH 3.7), declining exponentially until pH 5.5 and remaining negligible thereafter. However, unexpectedly, soil NO3?-N concentration was also maximal at pH 3.7 and was significantly negatively correlated with increasing pH thereafter. To investigate these unexpected NO3?-N results, arginine was added as a labile source of organic N and its extent of ammonification and nitrification measured at soil pHs 3.79, 4.42, 6.08 and 7.82. While arginine ammonification was apparently greatest at pHs 3.79 and 4.42, similar to mineralisation of soil organic N, nitrification of this added N was greatest at soil pH 7.82 and least at pH 3.79, the reverse of the situation with soil organic N, but much more in line with what was expected. It was concluded that the decline in soil NO3?-N with increasing pH in the unamended soils was an artefact, caused by increasing plant uptake of NO3?-N as yield increased, rather than a true effect of low pH increasing nitrification of soil organic N. Our results differ from most previous studies, which showed poor correlations between soil pH and arginine mineralisation. This was attributed to our use of much longer incubation times (up to 50 days) than usually employed. Under our conditions, arginine was therefore shown to be a useful model for mineralisation of labile soil organic N.  相似文献   

18.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

19.
Abstract

Degradation of dicyandiamide (DCD) was assayed in laboratory studies at 8, 15, and 22 C in a Decatur silt loam and in a Norfolk loamy sand. Dicyandiamide was very short lived at 22 C, with half‐lives of 7.4 and 14.7 days in the Decatur and Norfolk soils, respectively. In the Norfolk soil at 8 C, half‐life increased to 52.2 days. In a nitrificaton study of both soils at 22 C, 80 mg (NH4)2SO4‐N kg‐1 of soil was applied with 20 mg DCD‐N kg‐1 of soil and 100 mg kg‐1 (NH4)2S04‐N was added with 5% nitrapyrin. Distinct lag phases preceded zero order nitrification with the inhibitor treatments. Lag periods were 2 and 2.6 times the half life of DCD in the degradation study for Decatur and Norfolk soils, respectively. Like most nitrification inhibitors, the effectiveness of DCD decreases with increasing temperature. In the Norfolk loamy sand, nitrification inhibition by DCD was equal to nitrapyrin for up to 42 days, but in Decatur silt loam, DCD was less potent to nitrapyrin as a nitrification inhibitor.  相似文献   

20.
Wheat plants were grown on two soils of different texture, a sandy soil and a silty clay loam, in an atmosphere containing 14CO2. The 14C and total C content of the shoots, roots, soil rhizosphere CO2 and soil microbial biomass were measured 21, 28, 35 and 42 days after germination. There was a pronounced effect of soil texture on the turnover of root-derived C through the microbial biomass. Turnover was relatively fast and at a constant rate in the sandy soil but slowed down in the clay soil, following an initial high assimilation of root products into the microbial biomass.Four percent of the total fixed 14C was retained in the clay loam after 6 weeks compared with a corresponding value of 1.2% for the sandy soil. The proportion of fixed 14C recovered as rhizosphere CO2 at each of the sampling times was relatively constant for the sandy soil (ca 19%) but decreased from 17% at day 28 to 11% at day 42 in the clay soil. The proportion of total fixed 14C in the soil biomass as measured by a fumigation technique increased to a maximum value of 20% after 6 weeks in the sandy soil but decreased in the clay soil from 86% at day 21 to 26% after 42 days plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号