首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic carbon (SOC) pool is the largest among terrestrial pools. The restoration of SOC pool in arable lands represents a potential sink for atmospheric CO2. Restorative management of SOC includes using organic manures, adopting legume-based crop rotations, and converting plow till to a conservation till system. A field study was conducted to analyze soil properties on two farms located in Geauga and Stark Counties in northeastern Ohio, USA. Soil bulk density decreased with increase in SOC pool for a wide range of management systems. In comparison with wooded control, agricultural fields had a lower SOC pool in the 0–30 cm depth. In Geauga County, the SOC pool decreased by 34% in alfalfa (Medicago sativa L.) grown in a complex rotation with manuring and 51% in unmanured continuous corn (Zea mays L.). In Stark County, the SOC pool decreased by 32% in a field systematically amended with poultry manure and 40% in the field receiving only chemical fertilizers. In comparison with continuous corn, the rate of SOC sequestration in Geauga County was 379 kg C ha−1 year−1 in no-till corn (2 years) previously in hay (12 years), 760 kg C ha−1 year−1 in a complex crop rotation receiving manure and chemical fertilizers, and 355 kg C ha−1 year−1 without manuring. The rate of SOC sequestration was 392 kg C ha−1 year−1 on manured field in Stark County.  相似文献   

2.
Whereas non-leguminous cover crops such as cereal rye (Secale cereale) or annual ryegrass (Lolium multiflorium) are capable of reducing nitrogen (N) leaching during wet seasons, leguminous cover crops such as hairy vetch (Vicia villosa) improve soil N fertility for succeeding crops. With mixtures of grasses and legumes as cover crop, the goal of reducing N leaching while increasing soil N availability for crop production could be attainable. This study examined net N mineralization of soil treated with hairy vetch residues mixed with either cereal rye or annual ryegrass and the effect of these mixtures on growth and N uptake by cereal rye. Both cereal rye and annual ryegrass contained low total N, but high water-soluble carbon and carbohydrate, compared with hairy vetch. Decreasing the proportion of hairy vetch in the mixed residues decreased net N mineralization, rye plant growth and N uptake, but increased the crossover time (the time when the amount of net N mineralized in the residue-amended soil equalled that of the non-amended control) required for net N mineralization to occur. When the hairy vetch content was decreased to 40% or lower, net N immobilization in the first week of incubation increased markedly. Residue N was significantly correlated with rye biomass (r=0.81, P<0.01) and N uptake (r=0.83, P<0.001), although the correlation was much higher between residue N and the potential initial N mineralization rate for rye biomass (r=0.93, P<0.001) and N uptake (r=0.99, P<0.001). Judging from the effects of the mixed residues on rye N Concentration and N uptake, the proportion of rye or annual ryegrass when mixed with residues of hairy vetch should not exceed 60% if the residues are to increase N availability. Further study is needed to examine the influence of various mixtures of hairy vetch and rye or annual ryegrass on N leaching in soil. Received: 10 March 1997  相似文献   

3.
Managed pastures have potential for C and N sequestration in addition to providing forage for livestock. Our objectives were to investigate changes in soil organic C (SOC) and soil organic N (SON) concentrations and mineralizable C and N in cattle (Bos indicus) grazed bermudagrass [Cynodon dactylon (L.) Pers.] pastures up to 32 y after establishment. Management included low- and high-grazing intensity, fertilization, and winter overseeding with annual ryegrass (Lolium multiflorum Lam.) and clover (Trifolium sp.). Soil (0-15 cm) was sampled 7, 15, 26, and 32 y after establishment of Coastal and common bermudagrass pastures. No significant differences in SOC or SON concentrations were observed between Coastal and common bermudagrass pastures. Grazing strategies played important roles in C and N sequestration, as high-grazing intensity resulted in a lower increase in SOC and SON concentrations over time compared to low-grazing intensity. Increases in SOC were observed up to 26 y, while increases in SON were observed up to 32 y after establishment of bermudagrass pastures. Soil organic C increased 67 and 39% from 7 to 26 y at low-grazing intensity for bermudagrass+ryegrass and bermudagrass+clover pastures, respectively. SOC and SON concentrations did not increase beyond 15 y after bermudagrass establishment at high-grazing intensity. An exception was the Coastal bermudagrass+ryegrass pastures, which exhibited higher SON at 32 y than at 7 y at both grazing intensities. By 32 y, SON increased 83 and 45% in Coastal bermudagrass+ryegrass pastures at low- and high-grazing intensity, respectively, compared to 7 y. The introduction of clover to pastures decreased SOC and SON relative to ryegrass at high- but not at low-grazing intensity. Potentially mineralizable C increased from 7 to 15 y, while mineralizable N increased from 7 to 32 y. Potentially mineralizable N was also greater for bermudagrass+clover than bermudagrass+ryegrass pastures. Long-term increases in SOC and SON concentrations suggest that managed and grazed pastures have strong potential for C and N sequestration.  相似文献   

4.
Long-term soil carbon (C) dynamics in agro-ecosystems is controlled by interactions of climate, soil and agronomic management. A modeling approach is a useful tool to understand the interactions, especially over long climatic sequences. In this paper, we examine the performance of the Agricultural Production Systems sIMulator (APSIM) to predict the long-term soil C dynamics under various agricultural practices at four semi-arid sites across the wheat-belt of eastern Australia. We further assessed the underlying factors that regulate soil C dynamics in the top 30 cm of soil through scenario analysis using the validated model. The results show that APSIM is able to predict aboveground biomass production and soil C dynamics at the study sites. Scenario analyses indicate that nitrogen (N) fertilization combined with residue retention (SR) has the potential to significantly slow or reverse the loss of C from agricultural soils. Optimal N fertilization (Nopt) and 100% SR, increased soil C by 13%, 46% and 45% at Warra, Wagga Wagga and Tarelee, respectively. Continuous lucerne pasture was the most efficient strategy to accumulate soil C, resulting in increases of 49%, 57% and 50% at Warra, Wagga Wagga and Tarlee, respectively. In contrast, soil C decreases regardless of agricultural practices as a result of cultivation of natural soils at the Brigalow site. Soil C input, proportional to the amount of retained residue, is a significant predictor of soil C change. At each site, water and nitrogen availability and their interaction, explain more than 59% of the variation in soil C. Across the four sites, mean air temperature has significant (P < 0.05) effects on soil C change. There was greater soil C loss at sites with higher temperature. Our simulations suggest that detailed information on agricultural practices, land use history and local environmental conditions must be explicitly specified to be able to make plausible predictions of the soil C balance in agro-ecosystems at different agro-ecological scales.  相似文献   

5.
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.  相似文献   

6.
Cover crop and nitrogen(N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon(C)(SOC), total N(STN), ammonium N(NH_4-N), and nitrate N(NO_3-N) contents at the0–5, 5–15, and 15–30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane(Saccharum spontaneum L.) or elephant grass(Pennisetum purpureum Schumach.), cover crop, crimson clover(Trifolium incarnatum L.), and N fertilization rates(0, 100, and 200 kg N ha~(-1)). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1) than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0–5 and 5–15 cm were 9%–20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha~(-1)than in most of the other treatments. The soil NO_3-N content at 0–5 cm was 31%–45% greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1)than in most of the other treatments.The SOC sequestration increased from 0.1 to 1.0 Mg C ha~(-1)year~(-1)and the STN sequestration from 0.03 to 0.11 Mg N ha~(-1)year~(-1)from 2010 to 2014 for various treatments and depths. In contrast, the soil NH_4-N and NO_3-N contents varied among treatments,depths, and years. Soil C and N storages can be enriched and residual NO_3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.  相似文献   

7.
The carbon dynamics in soils is of great importance due to its links to the global carbon cycle. The prediction of the behavior of native soil organic carbon (SOC) and organic amendments via incubation studies and mathematical modeling may bridge the knowledge gap in understanding complex soil ecosystems. Three alkaline Typic Ustochrepts and one Typic Halustalf with sandy, loamy sand, and clay loam texture, varying in percent SOC of 0.2; S1, 0.42; S2, 0.67; S3 and 0.82; S4 soils, were amended with wheat straw (WS), WS + P, sesbania green manure (GM), and poultry manure (PM) on 0.5% C rate at field capacity (FC) and ponding (P) moisture levels and incubated at 35 °C for 1, 15, 30 and 45 d. Carbon mineralization was determined via the alkali titration method after 1, 5, 7 14, 21, and 28 d. The SOC and inorganic carbon contents were determined from dried up (50 °C) soil samples after 1, 15, 30, and 45 d of incubation. Carbon from residue mineralization was determined by subtracting the amount of CO2-C evolved from control soils. The kinetic models; monocomponent first order, two-component first order, and modified Gompertz equations were fitted to the carbon mineralization data from native and added carbon. The SOC decomposition was dependent upon soil properties, and moisture, however, added C was relatively independent. The carbon from PM was immobilized in S4. All the models fitted to the data predicted carbon mineralization in a similar range with few exceptions. The residues lead to the OC build-up in fine-textured soils having relatively high OC and cation exchange capacities. Whereas, fast degradation of applied OC in coarse-textured soils leads to faster mineralization and lower build-up from residues. The decline in CaCO3 after incubation was higher at FC than in the P moisture regime.  相似文献   

8.
Laboratory experiments were conducted to (i) study the influence of chemical composition of organic substrates (green manure, rice straw, wheat straw, and farmyard manure) and temperature on carbon (C) mineralization under flooded and nonflooded moisture conditions, (ii) study the relationship between C mineralization and chemical composition of organic materials, and (iii) model C mineralization kinetics under different temperature and moisture conditions. The proportion of added C mineralized under nonflooded conditions ranged between 45 and 66% at 35 °C compared to 18 to 42% at 15 °C. Flooding the soil reduced the proportion of added C mineralized, which ranged between 25 to 47% at 35 °C and 6 to 20% at 15 °C. Water-soluble components, cellulose, lignin, and nitrogen content of the organic source significantly influenced C mineralization. Temperature sensitivity of decomposition depended on the quality of the organic substrate with relatively less decomposable farmyard manure (FYM) being more sensitive (Q10 ?3.0) than the easily decomposable green manure (Q10 ?2.5). A first-order monocomponent model that is based on relative rate of mineralization and includes a parameter for speed of aging best described C mineralization under both the temperature and moisture conditions. It was concluded that FYM with preponderance of recalcitrant components and low decomposability provides greater C sequestration potential than green manure and crop residues.  相似文献   

9.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

10.
In India, cotton crop residues available after cotton picking are considered as waste materials and disposed off the field. For developing better residue management practices, knowledge of the decomposition kinetics is needed. Short-term laboratory incubations were conducted to determine the pattern of C mineralization from cotton leaves and stems [stem pieces (ca. 2 cm) vs. ground stem (0.25 mm)] in the two major soil groups (vertisols and inceptisols) on which cotton is grown to a large extent. The amount of C mineralized was significantly greater from leaf- (18.3% of added C) and ground stem-C (19% of added C) when compared to stem pieces-C (13.2% of added C). Differences between the residues were not seen in the inceptisols. The cumulative amount of C mineralized ranged from 9.6-11.5% of the added C. Narrowing the C:N ratio of stem did not enhance C mineralization.  相似文献   

11.
To assess the topsoil carbon sequestration potential (CSP) of China's cropland, two different estimates were made: (i) a biophysical potential (BP) using a saturation limit approach based on soil organic carbon (SOC) accumulation dynamics and a storage restoration approach from the cultivation‐induced SOC loss, and (ii) a technically attainable potential (TAP) with a scenario estimation approach using SOC increases under best management practices (BMPs) in agriculture. Thus, the BP is projected to be the gap in recent SOC storage to either the saturation capacity or to the SOC storage of uncultivated soil, while the TAP is the overall increase over the current SOC storage that could be achieved with the extension of BMPs. The recent mean SOC density of China's cropland was estimated to be 36.44 t/ha, with a BP estimate of 2.21 Pg C by a saturation approach and 2.95 Pg C by the storage restoration method. An overall TAP of 0.62 Pg C and 0.98 Pg C was predicted for conservation tillage plus straw return and recommended fertilizer applications, respectively. This TAP is comparable to 40–60% of total CO2 emissions from Chinese energy production in 2007. Therefore, carbon sequestration in China's cropland is recommended for enhancing China's mitigation capacity for climate change. However, priority should be given to the vast dry cropland areas of China, as the CSP of China is based predominantly on the dry cropland.  相似文献   

12.
Abstract. The potential for soil organic carbon sequestration, energy savings and the reduction of the emission of greenhouse gases were investigated for a range of changes in the management of tilled land and managed grassland. These parameters were modelled on a regional basis, according to local soils and crop rotations in England, and avoided the use of soil related indices. The largest carbon sequestration and saving contribution possible comes from an increase in the proportion of permanent woodland, such that a 10% change in land use could amount to 9 Mt C yr−1 in the initial years (arable and grassland). Changes in arable management could make a significant contribution to an abatement strategy if carried out in concert with greater use of permanent conservation field margins, increased returns of crop residues and reduced tillage systems, contributing 1.3 Mt C yr−1 in the initial years. It should be noted, however, that true soil carbon sequestration would be only a minor component of this (125 kt C yr−1), the main part being savings on CO2 emissions from reduced energy use, and lower N2O emissions from reduced use of inorganic nitrogen fertilizer.  相似文献   

13.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

14.
Historically, agriculturally induced CO2 release from soils has contributed to rising levels in the atmosphere. However, by using appropriate management, soils can be turned into carbon sinks. Many of the dryland regions of the world are characterised by degraded soils, a high incidence of poverty and a low capacity to invest in agriculture. Two well-proven soil organic matter models (CENTURY 4.0 and RothC-26 3) were used two explore the effects of modifying agricultural practices to increase soil carbon stocks. The changes to land management were chosen to avoid any significant increase in energy input whilst using technologies that would be available without radically altering the current agricultural methodology. Case studies were selected from dryland farming systems in Nigeria, Sudan and Argentina. Modelling showed that it would be possible to make alterations within the structure of the current farming systems to convert these soils from carbon sources to net sinks. Annual rates of carbon sequestration in the range 0.08–0.17 Mg ha−1 year−1 averaged over the next 50 years could be obtained. The most effective practices were those that maximised the input of organic matter, particularly farmyard manure (up to 0.09 Mg ha−1 year−1), maintaining trees (up to 0.15 Mg ha−1 year−1) and adopting zero tillage (up to 0.04 Mg ha−1 year−1). Verification of these predictions will require experimental data collected from field studies.  相似文献   

15.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

16.
Approximately 30% of global soil organic carbon (SOC) is stored in subtropical and tropical ecosystems but it is being rapidly lost due to continuous deforestation. Tree plantations are advocated as a C sink, however, little is known about rates of C turnover and sequestration into soil organic matter under subtropical and tropical tree plantations. We studied changes in SOC in a chronosequence of hoop pine (Araucaria cunninghamii) plantations established on former rainforest sites in seasonally dry subtropical Australia. SOC, δ13C, and light fraction organic C (LF C<1.6 g cm−3) were determined in plantations, secondary rainforest and pasture. We calculated loss of rainforest SOC after clearing for pasture using an isotope mixing model, and used the decay rate of rainforest-derived C to predict input of hoop pine-derived C into the soil. Total SOC stocks to 100 cm depth were significantly (P<0.01) higher under rainforest (241 t ha−1) and pasture (254 t ha−1) compared to hoop pine (176-211 t ha−1). We calculated that SOC derived from hoop pine inputs ranged from 32% (25 year plantation) to 61% (63 year plantation) of total SOC in the 0-30 cm soil layer, but below 30 cm all C originated from rainforest. These results were compared to simulations made by the Century soil organic matter model. The Century model simulations showed that lower C stocks under hoop pine plantations were due to reduced C inputs to the slow turnover C pool, such that this pool only recovers to within 45% of the original rainforest C pool after 63 years. This may indicate differences in soil C stabilization mechanisms under hoop pine plantations compared with rainforest and pasture. These results demonstrate that subtropical hoop pine plantations do not rapidly sequester SOC into long-term storage pools, and that alternative plantation systems may need to be investigated to achieve greater soil C sequestration.  相似文献   

17.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

18.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

19.
The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels;both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.  相似文献   

20.
The dynamics of inorganic N in soil following the application of plant residues depends on their composition. We assumed that all plant materials are composed of similar components, each decomposing at a specific rate, but differ in the proportions of the various components. The NCSOIL model that simulates C and N turnover in soil was used to link the rates of residue decomposition to their composition, defined as soluble, cellulose-like and lignin-like C and N, and thereby integrate short and long-term effects of residues on available N dynamics in soil. Five plant residues in a wide range of C:N ratios were incubated in soil for 24 weeks at 30 °C, during which C and N mineralization were measured. The materials with large C:N ratios (corn, rice hulls and wheat straw) were also incubated with NH4+-N to avoid N deficiency. The residues were analyzed for total and soluble C and N. The partitioning of insoluble C and N between cellulose- and lignin-like pools was optimized by best fit of simulated C and N mineralization to measured results. The decomposition rate constants of the soluble and lignin-like pools were assumed to be 1.0 and 10−5 d−1, respectively, and that of the cellulose-like pool, obtained by model optimization against mineralization of cellulose with NH4+-N in soil, was 0.051 d−1. The optimized, kinetically defined lignin-like pool of all residues was considerably larger than lignin contents normally found in plant residues by the Van Soest procedure. Gross N mineralization of tobacco and rape residues was similar, but N recovery from tobacco was larger, because a larger fraction of its C was in the lignin-like pool. N in rice hulls, corn and wheat residues was mostly recalcitrant, yet rice hulls did not cause N deficiency, because most of its C was recalcitrant too. The soluble components of the residues had strong short-term effects on available N in soil, but the cellulose-like pool was equally important for short and medium-term effects. Soluble and cellulose-like C were 29 and 42% of total C, respectively, in corn and 7 and 50% in wheat. Maximal net inorganic N losses, measured in both residue treatments after 2 weeks, were 42 mg g−1 C applied as corn and 31 mg g−1 C applied as wheat, or 84 and 110 mg g−1 decomposed C of corn and wheat, respectively. Rice hulls immobilized N slowly, but by the end of 24 weeks all three residues immobilized 26-27 mg N kg−1 C applied. The different dynamics of N immobilization demonstrated the need to determine the decomposability of C and N rather than their total contents in plant residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号