首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Field experiments were conducted over 5 years (2000–2004) at two sites (Star City and Birch Hills) in the Saskatchewan Parkland region to determine the effects of tillage and crop residue burning on soil total organic C (TOC), total organic N (TON), light fraction organic matter (LFOM), light fraction organic C (LFOC), light fraction organic N (LFON) and dry aggregation. Two tillage (ZT, zero tillage; CT, conventional tillage, with one tillage in autumn and another in spring) and two burning (B, residue burnt in autumn; NB, residue not burnt and returned to the soil) treatments were combined in a barley (Hordeum vulgare L.)–canola (Brassica napus L.) rotation. After five crop seasons, the mass of TOC and TON in the 0–15 cm soil tended to be greater, whereas mass of LFOM, LFOC and LFON was significantly greater in NB than B treatments at both sites. Zero tillage resulted in greater TOC, TON, LFOM, LFOC and LFON in soil than CT, in both B and NB treatments. The mass of TOC, TON, LFOM, LFOC and LFON in soil was the highest in the ZT–NB treatment, and lowest in the CT–B treatment. Zero tillage had a lower proportion of fine aggregates (<0.83 mm diameter) and a greater proportion of large aggregates (>6.4 mm diameter) at both sites, but the mean weight diameter (MWD) was greater under ZT than CT only at Birch Hills. Although the tillage × burning interaction was not significant in most cases, the ZT–NB treatment usually had the lowest proportion (22.6%) of fine aggregates and the greatest proportion (47.1%) of large aggregates, compared to the highest (34.9%) and the lowest proportion (35.6%) of these aggregates, respectively, in CT–B treatment. This indicated reduced potential for wind erosion when tillage was omitted (ZT) and crop residues were returned to the soil (NB). Returning crop residue to soil rather than burning usually increased soil organic C and N, and aggregation, but the differences between treatments were of greater magnitude between tillage treatments (ZT versus CT) than between burning treatments (B versus NB). Overall, returning crop residues along with ZT improved soil organic C and N, and aggregation, while burning in combination with CT resulted in the deterioration of these soil properties.  相似文献   

2.
长期稻秆还田对土壤微生物量及C、N动力学的影响   总被引:5,自引:0,他引:5  
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils, the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g•d)-1) decreased rapidly in the first two weeks' incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in Treatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.  相似文献   

3.
Investigations of 23 northwestern German sandy Ap horizons (mean clay content 35 g kg−1), that had higher organic matter (OM) levels than expected for sands, showed that the bulk soil C to N ratio reliably indicated the release of N from stabilized OM. Soils were incubated at 35 °C for 200 days under aerobic conditions. Cumulative N release curves were split into N released from fresh materials (Nfast) and N released from the larger pool of stabilized, older OM (Nslow rates, 0.06-0.77 μg N g−1 soil d−1, or 0.7-49 μg N g−1 OM). Correlating the Nslow rates with total N contents of soils yielded no satisfactory relationships while their relationship with C to N ratios was very close (negative exponential, R2=0.88). Low rates of N release (Nslow) per unit of OM occurred if C to N exceeded 15. This was associated with historical factors like podzolization, calluna heathland, plaggen fertilization or a combination of these.  相似文献   

4.
The in situ net nitrogen mineralization (Nnet) was estimated in five agricultural soils under different durations of organic farming by incubating soil samples in buried bags. Simultaneously, soil microbial C and N was determined in buried bags and in bulk soil under winter wheat and after harvest. The aim was to check for variations in soil microbial biomass contents and microbial C:N ratios during the incubation period, and their importance for Nnet rates. Microbial C and N contents were highest in soils that had been organically farmed for 41 years, whereas Nnet rates were highest in a short‐term organically managed soil that had been under grassland use until 36 years ago. The mean coefficient of variation in the bulk soil for microbial C estimates ranged from 5 to 12 %. Microbial N contents were similar inside buried bags and in the bulk soil at the end of the incubation periods. Under winter wheat during the incubation period until harvest, microbial C contents and microbial C:N ratios (in 10—27 cm depth only) decreased more strongly inside buried bags than in the bulk soil. Following harvest of winter wheat and ploughing, microbial biomass increased while in situ Nnet decreased, presumably due to N immobilization. The Nnet rates were not correlated with microbial N contents or changes in microbial N contents inside buried bags. At the end of the vegetation period of winter wheat, Nnet rates were negatively correlated with microbial C:N ratios. Because these ratios concurrently decreased more inside buried bags than in the bulk soil, the Nnet estimates of the buried bag method may differ from the Nnet rates in the bulk soil at that time.  相似文献   

5.
Ingrid Kgel-Knabner 《Geoderma》1997,80(3-4):243-270
Nuclear magnetic resonance (NMR) is a valuable tool for the characterization of soil organic matter and humification processes in soils. This review highlights soil organic matter studies based mainly on solid-state 13C and 15N NMR spectroscopy and some emerging applications, that may provide significant progress in our knowledge on soil organic matter. A major advantage of Nmr spectroscopy is that it can be used as a non-invasive method for solid soil samples or soil fractions. Although resolution is limited, one can obtain an overview on the organic matter structures present in the soil sample. Application of 13C and 15N NMR to soils has, for a long time, been confined to the study of bulk soils or humic extracts for structural characterization. The transformations of soil organic C and N are now being investigated after addition of 13C- and 15N-labelled parent materials to the soil and following their evolution in different C and N pools. With labelling techniques it is also possible to study the interaction of organic pollutants with soil organic matter. Contamination of a soil with man-made additives, such as soot or brown coal dust, can also be detected in soils or individual soil fractions.  相似文献   

6.
Rewetting a dry soil has long been known to cause a burst of respiration (the “Birch Effect”). Hypothesized mechanisms for this involve: (1) release of cellular materials as a result of the rapid increase in water potential stress and (2) stimulating C-supply to microbes via physical processes. The balance of these factors is still not well understood, particularly in the contexts of multiple dry/wet cycles and of how resource and stress patterns vary through the soil profile. We evaluated the effects of multiple dry/wet cycles on surface and subsurface soils from a California annual grassland. Treatments included 4, 6, and 12 cycles that varied the length of the drying period between rewetting events. Respiration was monitored after each wetting event while extractable C and N, microbial biomass, and microbial activity were assayed initially, after the first rewetting event, and at the end of the experiment. Initially, microbial biomass and activity (respiration, dehydrogenase, and N mineralization) in subsurface soils were ca. 10% and 20% of surface soil levels. After multiple cycles, however, subsurface soil microbial biomass and activity were enhanced by up to 8-fold, even in comparison to the constantly moist treatment. By comparison, surface soil microbial biomass and activity were either moderately (i.e. 1.5 times increase) or not affected by wetting and drying. Drying and rewetting led to a cascade of responses (soluble C release, biomass growth, and enhanced activity) that mobilized and metabolized otherwise unavailable soil carbon, particularly in subsurface soils.  相似文献   

7.
The hypothesis that roots enhance soil-N turnover in humified soil organic matter (SOM) (mull) but not in lignified SOM (mor) was tested in a study involving the growth of eight species of tree seedlings on the two contrasting humus forms. After 12 and 22 weeks of seedling growth, soil-CO2 efflux was measured with (1) growing seedlings, and after 22 weeks, with (2) roots only, shoots excised, and (3) with roots removed and soils amended with different rates of glucose. Indices of C-flux and of soil available-C were derived and compared to plant-N uptake, extractable soil mineral-N, anaerobically mineralized soil-N, N bioavailability to Agrostis grass following harvest of seedlings, and to seedling fine root C-chemistry. Significant soil x species interactions were found for total soil-CO2 efflux, root-dependent CO2, soil available-C and microbial biomass. In all cases, roots were important contributors to C-cycling in the mull soil but not in the mor soil. C was more limiting in the mor than in the mull microbial community. Plant-N uptake and the mineral-N pool was greater in the mor soil, reflecting that soil's higher specific N-supplying capacity (N-mineralized:CO2). Seedlings decreased the mineral-N pool in both soils, but the presence of roots increased N-mineralization in the mull soil and decreased N-mineralization in the mor soil. Significant positive relationships were observed in the mull soil only between soil respiration and plant N uptake at mid-season, and between soil respiration and N-mineralization at late-season. Birch root activity in the mull soil was greater than that of all other seedlings and this observation is discussed with respect to the autecology of birch. Soil respiration correlated with the non-polar extract content but not the lignin:N ratio of fine roots. Results suggest that root-released C in mull SOM is sufficient to relieve energy limitation to soil microbes and allow them to access appreciable amounts of soil-N, whereas ligninolytic activity, which may ultimately control soil-N turnover in mor SOM, is not increased by rhizodeposition.  相似文献   

8.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

9.
The succession of cyanobacteria was studied in a usar (alfisol, solonetz, alkaline) soil, located in a tropical region of upper Gangetic plain, following the first rainfall for a period of 10 months (i.e., July–April). A dozen cyanobacteria were identified to grow on the soil surface and their appearance was in the following order: Microcoleus sp., Calothrix brevissima, Scytonema sp., Cylindrosprmum licheniformae, Cylindrosprmum fertilissima, Nostoc calcicola, Nostoc punctiformae, Aphanothece parietina, Nostoc commune, Aulosira fertilissima, Phormidium sp., and Oscillatoria sp. Among these cyanobacteria, N. calcicola was the dominant species. N. calcicola was inoculated on the alkaline soil and incubated under ambient conditions in the light for 2 years in the laboratory. Changes in soil properties were more rapid after the incorporation of pyrite (FeS2). Recovery was monitored by using a filamentous heterocystous cyanobacterium N. calcicola and its bicarbonate-resistant (HCO3–R) mutant. The mutant strain showed better response to modification of soil pH following growth in soil.  相似文献   

10.
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil-ization systems on microbial biomass C,N and P of a gray fluvo-aguic soil in rice-based cropping system .Five fertilization treatments were designed under conventional tillae(CT) or on tillage(NT) system:no fertilizer(CK) ; chemical fertilizer only(CF) ; combining chemical fertilizer with pig manure(PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C,N and P were enriched in the surface layer of no-tilled soil,whereas they distributed relatively evenly in the tilled soil,which might result from enrichment of crop resdue,organic manure and mineral fertilzer,and surficial developent of root systems under NT.Under the cultivation system NT had slightly greater biomass C,N and P at 0-5 cm depth ,significantly less biomass C,N and P at 5-15 cm depth ,less microbial biomass C,N and equivalent biomass P at 15-30 cm depth as compared to CT,indicating hat tillage was beneficial for the multiplication of organims in the plowed layer of soil.Under the fallow system,biomass C,N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were neligible in the deeper layers.In the surface layer,biomass C,N and P in the soils amended with oranic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control.Soils without fertilzer had the least biomass nutrient contents among the five fertilization treatments.Obviously,the long-term application of organic manure could maintain the higher activity of microorganisms in soils.The amounts of biomass C,N and P in the fallowed soils varied with the tillage methods;they were much greater under NT than under CT,especially in the surface layer,suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.  相似文献   

11.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

12.
外加碳、氮对黄绵土有机质矿化与激发效应的影响   总被引:5,自引:0,他引:5  
应用14C标记的葡萄糖和麦秸,15N标记的(NH4)2SO4和Ca(NO3)2对生黄绵土、菜园黄绵土土壤有机质的矿化与激发效应进行了研究。结果表明,外加有机质,特别是外加易分解的葡萄糖,和外加氮源,特别是外加(NH4)2SO4,对两种黄绵土土壤的有机质矿化与激发效应都有明显的促进作用,土壤有机质的矿化是高肥力菜园黄绵土高于低肥力生黄绵土,而有机质矿化的激发效应却是低肥力生黄绵土高于高肥力菜园黄绵土。外加有机质与外加N同时施入土壤时,外加N对外加有机质的矿化与激发效应同样有明显的促进作用,并发现外加有机质与外加N在促进土壤有机质矿化与激发效应过程中表现出正交互作用。激发效应对土壤肥力的更新和培养有积极作用。  相似文献   

13.
外加碳、氮对土壤氮矿化、固定与激发效应的影响   总被引:9,自引:2,他引:9  
本文利用14C和15N对中国生黄绵土(坡地黄绵土)、菜园黄绵土和瑞典耕作草甸土的土壤氮矿化、固定与激发效应进行了研究。结果表明,外加碳、氮能促进土壤氮的矿化、固定与激发效应;促进作用的大小次序为外加NH4-15N大于外加NO3-15N,外加葡萄糖+NH4-15N大于外加葡萄糖+NO3-15N,外加麦秸+NH4-15N大于外加麦秸+NO3-15N,外加葡萄糖+NH4-15大于外加麦秸+NH4-15,外加葡萄糖+NO3-15N大于外加麦秸+NO3-15N;低肥力土壤高于高肥力土壤。在本文中提出了土壤净矿化氮的激发效应、土壤生物固定氮激发效应和土壤总矿化氮的总激发效应的概念,认为土壤氮的总激发效应更能反映土壤氮激发效应的实质。  相似文献   

14.
The aim of this study was to examine the occurrence and concentrations of volatile organic compounds (VOCs), in particular, volatile monoterpenes, in soil atmosphere under silver birch (Betula pendula L.) and two conifers, Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and to determine the effects of the most relevant monoterpenes on transformations of soil N. The study site was a 70-year-old tree species experiment in Kivalo, northern Finland. VOCs were collected using two methods, passive air samplers and a chamber method. In soil atmosphere under spruce and especially under pine, the concentrations of monoterpenes were high, α- and β-pinene, Δ-3-carene and myrcene being the most abundant compounds, whereas concentrations of monoterpenes in soil atmosphere under birch were negligible. Samples of humus layer from the birch stand incubated in vitro and exposed to vapors from monoterpenes typical of coniferous forest soil showed decreased rates of net N mineralization but simultaneously increased rates of C mineralization. The response of soil microbial biomass C and N to different monoterpenes varied, but some monoterpenes considerably decreased soil microbial biomass. Altogether these results suggest that these compounds have negative effects on soil N transformations, but may serve as carbon and energy source for part of soil microbes.  相似文献   

15.
We examined whether grass species and soil nitrogen (N) availability could enhance Carbon (C) and N turnover during root litter decay in grassland. Three species with increasing competitiveness (Festuca ovina, Dactylis glomerata and Lolium perenne) were grown at two N fertiliser levels in an undisturbed grassland soil, in which soil organic fractions derived for the last 9 years from Lolium root litter which was 13C-depleted. During the subsequent experimental year, the C turnover was calculated using the respective δ13C values of the old and new C in the root phytomass, in two Particulate Organic Matter (POM) fractions above 200 μm and in the lightest part of the aggregated soil fraction between 50 and 200 μm. Soil N availability was monitored during the regrowth periods with ion exchange resins (IER). The C decay rates of each particle size fraction were calculated with a simple mechanistic model of C dynamics. The N mineralisation immobilisation turnover (MIT) was characterised by dilution of 15N-labelled fertiliser in the N harvestThe C:N ratio and the residence time of C in the fractions decreased with particle size. The presence of a grass rhizosphere increased the decay rate of old C. Accumulation of new C in particle size fractions increased with species competitiveness and with N supply. Species competitiveness increased C turnover in the aggregated fraction, as a result of greater accumulation of new C and faster decay of old C. Fertiliser N increased N turnover and C mineralisation in the SOM. Species competitiveness decreased soil -N exchanged with the IER and increased dissolved organic C (DOC) content. The nature of the current rhizosphere is thus an important factor driving C and N transformations of the old root litter, in relation with grass species strategy. Plant competitiveness may stimulate the C and N turnover in the more evolved SOM fractions in a similar way to the mineral N supply.  相似文献   

16.
This study assessed the respective roles of biochemical quality and N content of plant residues on C and N dynamics in a soil. Both 15N- and 13C-labeled oilseed rape residues (roots, seedpod walls) combining different biochemical characteristics and similar N content or the same biochemical characteristics and different N contents were used as amendments. These treatments were combined with two levels of soil inorganic N to ensure that decomposition was not limited by N availability. The soil was incubated under laboratory conditions for 134 days. Soil amended with residues of similar biochemical quality (i.e. the two pod walls) displayed similar C mineralization dynamics when the initial N availability (residue+soil N) ranged from 1.7 to 3.2% of residue dry matter. The roots showed poorer decomposition than the pod walls, lower cumulative C mineralization and greater accumulation of root-derived C in the >50 μm coarse fraction of the soil organic matter. The N content of the residues influenced mineral N accumulation in the soil with a lower net immobilization of residues with low C-to-N ratios. Adding an exogenous source of inorganic N had no effect on C dynamics but modified the remineralization kinetics of the previously immobilized N, suggesting changes in the microbial community involved.  相似文献   

17.
营养液栽培条件下,以番茄(品种,合作906)为材料,研究CO2施肥与4种不同养分供应强度的交互作用对番茄幼苗生长及其叶片中的碳、氮浓度与碳、氮比动态变化的影响。结果表明,在不同营养液养分浓度下,CO2施肥能增加番茄幼苗生物量的积累,提高生长速度;增加番茄幼苗叶片中氮、碳积累量与吸收速率;而且对CO2作用效果的响应随营养液养分浓度的提高而增加。在所有处理中碳、氮积累量与吸收速率随生育期的延长呈上升趋势。说明在番茄育苗后期要增加施肥量,而且在CO2施肥的情况下施肥量增加的量要大。CO2施肥对生长在不同营养液中番茄叶片中的碳、氮比在不同生长阶段的影响是不同的,但在同一CO2浓度条件下,番茄幼苗各个取样阶段均表现为碳、氮比随营养液浓度的降低而增加。对番茄幼苗碳、氮积累量、总干生物量与生长时间的关系研究表明,氮积累量、总干生物量与生长时间均符合二次曲线变化。  相似文献   

18.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   

19.
C and N mineralization data for 17 different added organic materials (AOM) in a sandy soil were collected from an incubation experiment conducted under controlled laboratory conditions. The AOM originated from plants, animal wastes, manures, composts, and organic fertilizers. The C-to-NAOM ratios (ηAOM) ranged from 1.1 to 27.1. Sequential fibre analyses gave C-to-N ratios of soluble (ηSol), holocellulosic (ηHol) and ligneous compounds (ηLig) ranging from 1.1 to 57.2, 0.8 to 65.2, and 3.5 to 25.3, respectively. Very different patterns of net AOM-N mineralization were observed: (i) immobilization for four plant AOM; (ii) moderate mineralization (4-15% AOM-N) for composts; (iii) marked mineralization (11-27% AOM-N) for 1 animal AOM, 1 manure and 2 organic fertilizers; and (iv) high rates of transformations with possible gaseous losses for some N-rich AOM.The Transformation of Added Organics (TAO) model proposed here, described AOM-C mineralization (28 °C, 75% WHC) from three labile (L′), resistant (R) and stable (S) compartments with the sole parameters PL and PS=fractions of very labile and stable compounds of AOM, respectively. Dividing the C-compartments by their C-to-N estimates supplied the remaining NAOM fraction (RAONF). A Pim parameter split the TAO nitrogen fraction (TAONF=added N-RAONF) into two compartments, immobilized (imN) and inorganic (inorgN) N. A Pim>0 value meant that all the TAONF plus a fraction (Pim−1) of native soil inorganic N was immobilized. Additional N mineralization was predicted when necessary from imN by first order kinetics (constant kremin). The TAO version with two parameters Pim and kremin allowed us to predict very different patterns of N mineralization and N immobilization. In a few cases, a further first order kinetic law (constant kv) was added to predict N volatilization from inorgN. Two hypotheses were tested: (i) ηL′, ηR, ηS (C-to-N of L′, R and S)=ηSol, ηHol, ηLig, respectively, (ii) ηL′=ηR=ηS=ηAOM. The first hypothesis was validated by these data, and the second was a good approximation of the former one. In all the cases, predictions were in good agreement with measured values.  相似文献   

20.
The influence of biochemical characteristics of 15 crop residues on C and N mineralisation in soil was investigated by following the decomposition of roots, stems and leaves of four subtropical species and one temperate species buried into the soil. The C, N and polyphenols contents were measured in different biochemical pools obtained from residues of the different organs. The mineralisation of root C was significantly lower than that of leaves and stems. Chemical analysis showed a higher polyphenol content in the leaves and a higher ligninlike content in the roots. Carbon and N mineralisation were simulated with the STICS decomposition submodel and tested against the data set. The model predicted leaf and stem C mineralisation for all five species fairly accurately, but failed to predict root C mineralisation, indirectly revealing the more complex composition of the root tissue. The results showed the interest of separately considering the different plant parts when studying plant residue decomposition and the need to develop other methods of residue quality characterisation to improve the prediction of residue decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号