首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designated to evaluate the relative effects of litter depth and decomposition stage of needles on fungal colonization of needle litter in field experiments. The experiment was carried out in coniferous temperate forests in central Japan. Needle litter of Chamaecyparis obtusa and Pinus pentaphylla var. himekomatsu at two decomposition stages (recently dead and partly decomposed) were placed into the organic layer at two depths (on the surface of and beneath the litter layer). Fungal colonization of needles after 1 year was examined in terms of hyphal abundance and frequency of fungal species. Total and live hyphal length on needles were affected by the litter depth and (or) the decomposition stage of needles. Length of darkly pigmented hyphae on needles was 1.7-2.6 times greater beneath the litter layer than on the litter surface regardless of the decomposition stage of needles. Length of clamp-bearing hyphae in Pinus pentaphylla was 5.0-5.2 times greater in partly decomposed needles than in recently dead needles regardless of the litter depth. Frequencies of Pestalotiopsis spp. and Cladosporium cladosporioides were higher on recently dead needles than on partly decomposed needles and (or) were higher on the litter surface than beneath the litter layer. Frequencies of Trichoderma, Penicillium, and Umbelopsis species generally were higher on partly decomposed needles than on recently dead needles and were higher beneath the litter layer than on the surface.  相似文献   

2.
The agar-film method was used to assess fungal biomass and standing crop in several analogous decomposition stages of two leaf species (the fast decomposing Michelia nilagirica and the slow decomposing Semecarpus coriaceae), both from an upper montane rainforest in Sri Lanka. At all decomposition stages the fungal biomass on Michelia litter was significantly higher (P<0.001) than for Semecarpus and had developed much more rapidly (17.04 mg g−1 at the first decomposition stage compared with 4.39 mg g−1 for Semecarpus). These figures are considerably higher than those for a cool temperate deciduous forest, but when the data are given as fungal biomass per area the reverse is true. Data are given on the contribution of different hyphal types showing a trend for change (hyaline to dark hyphae) during the course of decomposition. The mass of dead hyphae is considerably lower than data from temperate forests. Data on immobilization of C and of plant nutrients (N, P, K, Ca, Mg and Na) are provided plus hyphal nutrient contents expressed as % of total contents in the leaf litter. These data are comparable to those from temperate forests.  相似文献   

3.
Total length and biomass of fungal mycelium in the soil of a young stand of second-growth Douglas-fir in the central Oregon Coast Range were estimated over 27 months with the agar-film technique. Mycelial mass was at maximum in fall and spring and significantly lower in summer. Melanized hyphae dominated other colors, averaging 66% of monthly litter and 73.7% of soil hyphal weight. The mycorrhizal fungus Cenococcum geophilum Fr. had significantly larger average diameter than other hyphae and contributed from 1.2 to 64.8% of the monthly hyphal volume. Multiple regression analyses with temperature, moisture, and litterfall produced no adequate predictive equations for monthly fungal biomass. Large biomass fluctuations over short periods necessitate frequent sampling and long-term study to fully assess the importance of fungal hyphae in ecosystems.  相似文献   

4.
Initial decomposition rates, changes in organic chemical components (acid-insoluble fraction, holocellulose, polyphenols, soluble carbohydrates) and nutrient dynamics (K, Mg, Ca, P, N) were examined for fine roots and leaves of Japanese cypress (Chamaecyparis obtusa). Litterbag experiments designed to evaluate the relative effects of litter type and position of litter supply in the soil were carried out, considering that root and leaf litter typically occupy different locations and have different substrate qualities. Litterbags of roots and leaves were placed at two positions (on the soil surface and in the humus layer), and collected every 3 months over one year. The mass loss rate and N release were slower during root decomposition in the humus layer than during leaf decomposition on the soil surface. These differences between root and leaf decomposition were mainly caused by the litter type, and the effect of the position on decomposition was relatively small. Root litter was less influenced by position related effects, such as differences in humidity, than leaf litter, and this recalcitrant trait to environmental effects may be responsible for the slower mass loss rate and N release in root decomposition. The results of the present study suggest that fine roots are persistent in the soil and serve an important role in N retention in forest ecosystems because of their litter substrate quality.  相似文献   

5.
In acidified forest soils, the coarse‐soil fraction is a potential nutrient source. Plant nutrient uptake from the coarse‐soil fraction is aided by ectomycorrhiza. Similarly, (recalcitrant) organic matter (OM) is an important nutrient source largely made plant‐available through (symbiotic) microorganisms, especially in the topsoil. We hypothesized that in a podzol profile, fungal hyphae would concentrate in nutrient hotspots, either OM or the coarse‐soil fraction. Absolute hyphal length, base saturation, and organic‐C content of a Podzol profile were determined in the fine‐earth and coarse‐soil fractions. In the fine‐earth fraction, hyphae were attracted by the organic‐C content and relative high base saturation. In the coarse‐soil fraction of the BhBs horizon, the absolute hyphal length exceeded the hyphal length in the fine earth by factor 3, yet C content and base saturation were lowest. We could not determine to what fungi the hyphae belonged. Most likely ectomycorrhiza, ericoid mycorrhiza and saprotrophic fungi dominate the upper soil layers of this profile and all utilize OM for nutrition. In the deeper mineral horizons and especially in the coarse‐soil fraction, ectomycorrhiza are better adapted than other fungi to harvest nutrients from inorganic sources. Additionally, favorable physical properties may explain the high amount of fungal hyphae in the coarse‐soil fraction of the BhBs horizon. Both the coarse‐soil fraction and deeper mineral soil horizons may play a more active role in microbial nutrient cycling than previously assumed.  相似文献   

6.
Litter decomposition is an important process of C and N cycling in the soil. Variation in the response of litter decomposition to nitrogen (N) addition (positive, negative or neutral) has been observed in many field studies. However, mechanism about variability in individual fungal species response to N addition has not yet been well demonstrated in the literature. Therefore, the objective of this study was to investigate the effects of N addition and litter chemistry properties on litter decomposition and enzyme activities of individual fungi. Three fungal species (Penicillium, Aspergillus, and Trichoderma) were isolated from a subtropical mixed forest soil. An incubation experiment was conducted using the individual fungi with two types of litter (leaf of Pinus massoniana and needle of Cryptocarya chinensis) and different N addition levels (0, 50 and 100 for N-deficient treatments, and 500 and 1000 μg N for N-excessive treatments). Cumulative CO2-C, enzyme activities, and lignin and cellulose loss were measured during the incubation period of 60 days. Litter decomposition and enzyme activities significantly varied with the fungal species, while the N addition and litter types greatly affected fungal enzyme activities. The N treatments significantly increased lignin-rich needle decomposition by lignocellulose decomposers (Penicillium and Aspergillus) but did not affect their leaf decomposition. On the contrary, The N treatments stimulated leaf decomposition by cellulolytic species (Trichoderma) but did not affect its needle decomposition. Correlation analysis showed that lignin in the litter was the key component to affect litter decomposition. Activities of N-acetyl-β-glucosaminidase and phenol oxidase were both positively correlated to litter decomposition. The fungi (Penicillium and Aspergillus) with higher production of N-acetyl-β-glucosaminidase showed higher litter decomposition ability. The low N addition levels stimulated Penicillium and Aspergillus litter decomposition, but they still required more N source (e.g., litter N source) to support decomposition. Depressed fungal litter N uptake (lower N-acetyl-β-glucosaminidase activities) only occurred at the highest N addition level. Litter decomposition of Trichoderma depended more on external N and its litter decomposition capability was the lowest among the three species.  相似文献   

7.
The abundance and micro-stratification of bacteria and fungi inhabiting the organic layers of a Scots pine forest (Pinus sylvestris L.) were investigated. An experiment using stratified litterbags, containing organic material of four degradation stages (fresh litter, litter, fragmented litter and humus) was performed over a period of 2.5 years. Dynamics and stratification of fluorescent stained bacteria and fungi, ratios between bacterial and fungal biomass, and relationships with moisture and temperature are described. Average bacterial counts in litter and fragmented litter were similar, i.e., approximately 5×109 bacteriag–1 (dry weight) organic matter, and significantly exceeded those in humus. The mean bacterial biomass ranged from 0.338 to 0.252mg carbon (C) g–1 (dry weight) organic matter. Lengths of mycelia were significantly below the usually recorded amounts for comparable temperate coniferous forests. The highest average hyphal length, 53mg–1 (dry weight) organic matter, was recorded in litter and decreased significantly with depth. The corresponding mean fungal biomass ranged from 0.050 to 0.009mg Cg–1 (dry weight). The abundance of bacteria and fungi was influenced by water content, that of fungi also by temperature. A litterbag series with freshly fallen litter of standard quality, renewed bimonthly, revealed a clear seasonal pattern with microbial biomass peaks in winter. The mean hyphal length was 104mg–1 (dry weight) and mean number of bacteria, 2.40×109 bacteria g–1 (dry weight). Comparable bacterial and fungal biomass C were found in the freshly fallen litter [0.154 and 0.132mgCg–1 (dry weight) organic material, respectively]. The ratio of bacterial-to-fungal biomass C increased from 1.2 in fresh litter to 28.0 in humus. The results indicate the existence of an environmental stress factor affecting the abundance of fungi in the second phase of decomposition. High atmospheric nitrogen deposition is discussed as a prime factor to explain low fungal biomass and the relatively short lengths of fungal hyphae in some of the forest soil layers under study. Received: 26 June 1997  相似文献   

8.
Streptomycete spores germinated most successfully when placed amongst hyphae of fungi that they could subsequently antagonize. The hyphae of many streptomycetes from Picea litter were able to antagonize fungi from the same habitat, but they were less effective against a group of alien fungi. Streptomycete hyphae were shown to be able to grow at the expense of antagonized fungal hyphae which suggested that they were gaining nutrients from the interaction. The fungal-streptomycete interactions were similar to interfungal hyphal interference reactions. No instances of hyphal penetration were recorded. Many bacteria from the H layer were able to lyse dead Streptomycete hyphae and they were shown to be capable of using both dead and living Streptomycete hyphae as a sole C source. Bacteria from the L and F litter layers were less active in these respects.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of most higher plants. In addition to being a major component of soil microbial biomass, AMF hyphae produce glomalin, a recalcitrant glycoproteinaceous substance highly correlated with soil aggregate water stability. This study addresses the lack of knowledge concerning the decomposition of hyphae and glomalin. We used an experimental design that exploited the lack of saprobic capabilities of AMF hyphae by incubating field soil samples in the dark, and hence in the absence of plant or AMF hyphal growth. In 150 days, hyphal length decreased 60%, while glomalin, quantified by the Bradford protein assay, declined only 25%. Immuno-reactive glomalin decreased 46%. This study serves as a proof-of-concept for further examination of factors that influence decomposition of AMF hyphae using similar experimental designs.  相似文献   

10.
秦华  白建峰  徐秋芳  李永春 《土壤》2015,47(4):704-710
以摩西球囊霉(Glomus mosseae)为供试菌种,在光照培养箱内利用分室根箱研究丛枝菌根真菌菌丝对多氯联苯(polychlorinated biphenyls,PCBs)污染土壤的修复效应及其机理。试验设置接种丛枝菌根真菌的处理以及不接种的对照,选用美国南瓜(Cucurbita pepo L.)为供试植物,在南瓜生长40天后将接种菌根真菌处理的菌丝室土壤从尼龙网向外水平分为4层取样,测定PCBs及磷脂脂肪酸含量。结果表明:菌丝可以穿越尼龙网影响菌丝室土壤,且距离尼龙网越远菌丝量越低;菌丝显著促进了土壤微生物量(P0.05),并改变了不同土层土壤微生物群落结构;接种菌根真菌处理各土层PCBs降解率为35.67%~57.39%,均显著高于对照的17.31%,相关分析结果表明土壤三氯、四氯联苯以及PCBs总量与菌丝量呈极显著负相关(P0.01);菌丝际土壤微生物量,特别是细菌生物量与土壤三氯联苯含量呈显著负相关(P0.05)。可见,菌丝通过影响菌丝际土壤微生物群落结构及生物量,促进三氯及四氯联苯降解,从而提高土壤PCBs修复效率。  相似文献   

11.
Litter quality is an important determinant of soil organic matter formation. Changes of organic components were investigated along decomposition of black locust (Robinia pseudoacacia L.) leaf litter and black pine (Pinus nigra Arn.) needle litter in the native adjacent coeval forest stands. To this purpose, data from proximate analyses were compared with those from CPMAS 13C NMR. Newly shed leaf litter of black locust had significantly higher concentrations of ADSS (acid detergent soluble substances) as well as lower concentrations of cellulose and AUR (acid unhydrolyzable residues that include lignin) and higher AUR-to-Cellulose ratio than that of black pine. The 13C CPMAS NMR spectra of newly shed leaf litter of black locust and black pine revealed that O-Alkyl-C components (including cellulose and hemicelluloses) accounted, respectively, for 53.8% and 61.4% of the total area of the spectra. All other C fractions were relatively more abundant in black locust than in black pine. Within individual sampling periods, relationships between residual litter mass and concentrations of ADSS, cellulose and AUR were examined, as were relationships between residual litter C and NMR fractions. Four periods were defined based on the slopes of the decomposition curve, with the length of period I defined by the start of a net decrease of AUR. Proximate analyses and NMR data showed changes in chemical composition over the decomposition process, as well as changes in decay rates of the residues, following different paths in the two litters. ADSS decayed faster in black locust litter; in contrast cellulose and AUR decayed faster in that of black pine. AUR concentration increased in both litters during decomposition; however, compared to black pine, the remaining litter of black locust was richer in AUR, despite the lower initial concentration, and had a higher AUR-to-Cellulose ratio. Phenol-C and Aryl-C decayed faster in black locust litter, while Alkyl-C decayed faster in that of black pine. In both litters, mass loss in periods was negatively correlated to concentration of AUR at the start of the periods. C loss in periods was negatively correlated to the concentration at the start of the periods of MC-to-PC (an index of lignin content) in black locust litter and positively correlated to Alkyl-C and O-Alkyl-C in that of black pine. Phenol-C, O-Alkyl-C and Aryl-C were the most decomposable C fractions in black locust. O-Alkyl-C and Alkyl-C were the most decomposable C fractions in black pine. Limit value was lower in black pine than in black locust. Consequently the different pattern of litter decomposition can affect the size of C sequestration in the forest floor and the quality of accumulated organic carbon.  相似文献   

12.
Scots pine (Pinus sylvestris) needle litter originating from control plots and plots that had received a wood ash fertilization (3 t ha−1) 19 yr earlier were allowed to decompose in a reciprocal experimental design to detect the effects of ash fertilization and needle litter origin on the decomposition rate. The experimental design was repeated in two Scots pine forest stands of different fertility and the litterbags were harvested after 4 and 16 months. Ash fertilization resulted in a higher needle litter decomposition rate but the needle origin did not influence the results. Stand fertility correlated positively to the decomposition rate.  相似文献   

13.
Many studies have shown that the total abundance of hyphae in the soil covaries seasonally with soil moisture. We investigated the extent to which soil hyphal abundance varies as a function of depth and moisture availability within the soil profile during the dry season, and determined whether soil moisture compensation via hydraulic lift (HL) buffers rhizosphere fungi from the effects of severe soil drying. We measured soil water potential, isotopic composition of soil water and total hyphal length in a California coast live oak stand and adjacent grassland at the beginning and end of the 5-month summer drought period. Throughout the summer, oaks maintained predawn water potential values (−0.4±0.1 MPa) that were significantly above those recorded in the 0-200 cm soil depth interval, strongly suggesting root access to groundwater. Direct evaporation of soil water was much more intense and affected deeper layers of the profile in the grassland compared to the oak stand, as indicated by extremely negative water potential values and very enriched isotopic composition of soil water near the surface. Significantly higher soil water potential and less isotopically enriched soil water at 15-40 cm depth in the oak stand were consistent with oak root exudation of isotopically depleted groundwater or deep soil water not exposed to evaporation. Hyphal length in the soil profile declined markedly during the summer drought period in the grassland, particularly in upper layers (41-75% decrease at 0-40 cm depth), indicating rapid turnover of the arbuscular mycorrhizae (AMF) dominated hyphal carbon pool after grass senescence. By contrast, soil hyphal length in the ectomycorrhizal (EM)/AM oak stand remained remarkably constant throughout the summer drought period, with the only exception of the topsoil layer exposed to direct evaporation (49% decrease at 5 cm depth). The sustained exudation of water from roots to soil through HL may have buffered rhizosphere hyphae against the negative effects of extreme soil desiccation in the oak stand. These data suggest that HL by deep-rooted trees may influence the biogeochemical cycling of carbon and nutrients in seasonally dry ecosystems through effects on rhizosphere fungi.  相似文献   

14.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

15.
Fungal decomposition of and phosphorus transformation from spruce litter needles (Picea abies) were simulated in systems containing litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains of Setulipes androsaceus (L.) Antonín, Chalara longipes (Preus) Cooke, Ceuthospora pinastri (Fr.) Höhn., Mollisia minutella (Sacc.) Rehm, Scleroconidioma sphagnicola Tsuneda, Currah & Thormann and an unknown strain NK11 were used as representatives of autochthonous mycoflora. Systems were incubated for 5.5 months in laboratory conditions. Fungal colonization in systems and competition among strains were assessed using the reisolation of fungi from individual needles. After incubation, needles were extracted with NaOH and extracts were analysed using 31P nuclear magnetic resonance spectroscopy (NMR). Needle decomposition was determined based on the decrease in C:N ratio. Systems inoculated with the basidiomycete S. androsaceus revealed substantial decrease in C:N ratio (from 25.8 to 11.3) while the effect of ascomycetes on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did not participate substantially in litter decomposition, but were directly involved in phosphorus transformation and together with S. androsaceus could transform orthophosphate monoesters and diesters from spruce litter needles into diphosphates, polyphosphates and phosphonates. These transformations seem to be typical for saprotrophic fungi involved in litter needle decomposition, although the proportion of individual phosphorus forms differed among studied fungal strains. Phosphonate presence in needles after fungal inoculation is of special interest because no previous investigation recorded phosphonate synthesis and accumulation by fungi. Our results confirmed that the 31P NMR spectroscopy is an excellent instrumental method for studying transformations of soil organic phosphorus during plant litter decomposition. We suggest that polyphosphate production by S. androsaceus may contribute to the phosphorus cycle in forest ecosystems because this fungus is a frequent litter colonizer that substantially participates in decomposition.  相似文献   

16.
In an earlier study we reported the apparent stabilization of a low fungal biomass in ex-arable lands during the first decades after abandonment. It was hypothesized that the lack of increase in fungal biomass was due to constraints on development of fungi with persistent hyphae such as lignocellulolytic basidiomycetes and ericoid mycorrhizal fungi. With respect to the former group, the slow increase of the pool of lignocellulose-rich organic matter was expected to be the major constraint for their development. To study this, we enriched soil samples of one arable land, of two recently abandoned arable lands, of one older abandoned arable land and of heathland with carbon substrates that differed in composition (glucose, cellulose and sawdust). In addition, we combined the effect of carbon addition on fungal biomass development in arable and recently abandoned lands with inoculation of 1% of soil from the older abandoned site and the heathland. All treatments induced a fast increase and a subsequent rapid decline in fungal biomass in the arable and ex-arable fields. Denaturing Gradient Gel Electrophoresis (DGGE) band patterns and enzyme activities did show differences between the carbon treatments but not between the recent and older abandoned field sites, indicating a similarly responding fungal community even after three decades of land abandonment and irrespective of soil inoculation. Identification of fungi by sequencing and culturing confirmed that decomposition processes were mostly dominated by opportunistic fungi in arable and ex-arable fields. In the heathland, only a very slow increase of microbial activity was observed after addition of carbon and sequencing of DGGE bands showed that ericoid mycorrhiza (ERM) fungi were responsible for carbon decomposition. We conclude that an increase of enduringly present fungal hyphae in ex-arable land may only be possible when a separate litter layer develops and/or when suitable host plants for ERM fungi become established.  相似文献   

17.
Many studies on the decrease in the contents of elements of decomposing litter have been carried out usually by applying the litter bag method in forest ecosystems. Release of elements from the litter, however, can be divided into three routes, that is, via liquid, solid, and gaseous phases, including leaching, fragmentation, and decomposer respiration, respectively. This study focused on water soluble elements in the decomposing needle litter of Japanese cedar (Cryptomeria japonica, D. Don) as a route of release via the liquid phase. Because rainfall leaches water soluble elements from decomposing litter on forest floor, the leaching process is important for the transport of elements from litter layers to soil horizons, which can affect the composition of soil solutions (Takahashi 1995). Moreover, nutrients in the leachate can be used for microbial and plant communities to control the dynamics of these communities. I investigated 1) the relationships between water soluble elements and the decomposition stages of the litter, and 2) variation in the contents of water soluble elements.  相似文献   

18.
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the C balance. We studied the decomposition of Scots pine (Pinus sylvestris L.) needle and root litter in boreal peatland sites representing gradients in drainage succession (succession following water level drawdown caused by forest drainage) and soil nutrient level during several years of varying weather conditions. Neither gradient had an unambiguous effect on litter mass loss. Mass loss over 2 years was faster in undrained versus drained sites for both needle litter, incubated in the moss layer, and fine root litter, incubated in 0-10 cm peat layer, suggesting moisture stress in the surface layers of the drained sites limited decomposition. Differences among the drained sites were not consistent. Among years, mass loss correlated positively with precipitation variables, and mostly negatively or not at all with temperature sum. We concluded that a long-term water level drawdown in peatlands does not necessarily enhance decay of fresh organic matter. Instead, the drained site may turn into a ‘large hummock-system’ where several factors, including litter quality, relative moisture deficiency, higher acidity, lower substrate temperature, and in deeper layers also oxygen deficiency, may interact to constrain organic matter decomposition. Further, the decomposition rates may not vary systematically among sites of different soil nutrient levels following water level drawdown. Our results emphasize the importance of annual weather variations on decomposition rates, and demonstrate that single-period incubation studies incorporate an indeterminable amount of temporal variation.  相似文献   

19.
Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration - compared to initial values - in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1-2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized.The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs.  相似文献   

20.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号