首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work analyzes the direct effect of soil management practices on soil microbial communities, which may affect soil productivity and sustainability. The experimental design consisted of two tillage treatments: reduced tillage (RT) and zero tillage (ZT), and three crop rotation treatments: continuous soybean (SS), corn–soybean (CS), and soybean–corn (SC). Soil samples were taken at soybean planting and harvest. The following quantifications were performed: soil microbial populations by soil dilution plate technique on selective and semi-selective culture media; microbial respiration and microbial biomass by chloroform fumigation-extraction; microbial activity by fluorescein diacetate hydrolysis; and fatty acid methyl ester (FAME) profiles. Soil chemical parameters were also quantified. Soil organic matter content was significantly lower in RT and SS sequence crops, whereas soil pH and total N were significantly higher in CS and SC sequence crops. Trichoderma and Gliocladium populations were lower under RTSS and ZTSS treatments. Except in a few cases, soil microbial respiration, biomass and activity were higher under zero tillage than under reduced tillage, both at planting and harvest sampling times. Multivariate analyses of FAMEs clearly separated both RT and ZT management practices at each sampling time; however, separation of sequence crops was less evident. In our experiments ZT treatment had highest proportion of 10Me 16:0, an actinomycetes biomarker, and 16:1ω9 and 18:1ω7, two fatty acids associated with organic matter content and substrate availability. In contrast, RT treatment had highest content of branched biomarkers (i15:0 and i16:0) and of cy19:0, fatty acids associated with cell stasis and/or stress. As cultural practices can influence soil microbial populations, it is important to analyze the effect that they produce on biological parameters, with the aim of conserving soil richness over time. Thus, in a soybean-based cropping system, appropriate crop management is necessary for a sustainable productivity without reducing soil quality.  相似文献   

2.
Various biological amendments, including commercial biocontrol agents, microbial inoculants, mycorrhizae, and an aerobic compost tea (ACT), were evaluated, alone and in conjunction with different crop rotations, for their efficacy in introducing beneficial microorganisms, affecting soil microbial community characteristics (SMCC), and reducing soilborne diseases of potato in greenhouse and field trials in Maine. Most amendments successfully delivered microorganisms into the soil, altering microbial populations and activity in accordance with the particular organisms added, and significantly altering SMCC (as determined by FAME analysis) to various degrees from 2 to 24 weeks. Amendment effects were greatest early on (2 weeks after amendment), but effects associated with crop treatment became more dominant at subsequent assessments (10 and 24 weeks after amendment). In field trials, effects on microbial characteristics, soilborne diseases and tuber yield were variable, with some microbial inoculants and a biostimulant producing no significant effects, whereas arbuscular mycorrhizae, reduced stem canker and black scurf by 17–28%. When used in three different 2 yr crop rotations (barley/ryegrass, barley/clover, and potato, all followed by potato), biological amendments reduced soilborne disease and improved yield in some rotations, but not others. Soil-applied ACT and the combination of ACT with a mixture of beneficial microorganisms (Mix) reduced stem canker, black scurf, and common scab on tubers by 18–33% and increased yield 20–23% in the barley/ryegrass rotation, but not in the other rotations. Mix also reduced disease (20–32%) in the barley/clover rotation only. None of the amendments significantly reduced disease in continuous potato plots. Both crop rotation and amendment treatments significantly affected SMCC, but rotation effects were more dominant. These results indicate that certain rotations were better able to support the added beneficial organisms from amendments and enable more effective biological control, and also that favorable crop rotations may be more effective than amendments in manipulating or altering SMCC. Establishment and persistence of amendment effects may depend on many factors, but an effective and supportive crop rotation is apparently important.  相似文献   

3.
Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles, were compared in three soils amended or not amended with dairy or swine manure at two temperatures (18 and 25°C) and two soil water regimes (constant and fluctuating) in laboratory incubation assays. Soil type was the dominant factor determining microbial community characteristics, resulting in distinct differences among all three soil types and some differing effects of manure amendments. Both dairy and swine manures generally increased bacterial populations, substrate diversity, and FAME biomarkers for gram-negative organisms in all soils. Microbial activity was increased by both manures in an Illinois soil but only by dairy manure in two Maine soils. Dairy manure had greater effects than swine manure on SU and FAME parameters such as increased activity, utilization of carbohydrates and amino acids, substrate richness and diversity, and fungal FAME biomarkers. Temperature and water regime effects were relatively minor compared with soil type and amendment, but both significantly affected some microbial responses to manure amendments. Overall, microbial characteristics were more highly correlated with soil physical factors and soil and amendment C content than with N levels. These results indicate the importance of soil type, developmental history, and environmental factors on microbial community characteristics, which may effect nutrient availability from manure amendments and should be considered in amendment evaluations.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture  相似文献   

4.
Intensive cropping is considered to contribute to negative effects both on soil physiochemical properties and on long-term grain yield, which can be alleviated by appropriate crop rotations. The soil microbial community can vary with different crop rotations, which in turn affect soil quality and grain yield. Therefore, it is of great significance to elucidate the response of the soil microbial community to crop rotation. In this study, the structural and functional changes of microbial community in different crop rotations were analyzed using high-throughput sequencing and metagenomics analysis in a field experiment. The continuous winter wheat-summer maize cropping system was the control, and three crop rotations were established in October 2016 as follows: (1) spring peanut→winter wheat-summer maize, (2) winter wheat-summer peanut→winter wheat-summer maize and (3) spring sweet potato→winter wheat-summer maize. Soil samples were collected in September 2021 for soil microbial assessment. The results showed that the relative abundance of Actinobacteriota in the soil of spring sweet potato→winter wheat-summer maize was significantly higher (15.2%) than that in the control. The relative abundance of Ascomycota was significantly higher (19.8%–23.2%) in the soil following crop rotation compared with the control. Compared with the control, spring peanut→winter wheat-summer maize enriched energy metabolism genes, and spring sweet potato→winter wheat-summer maize reduced the genes related to plant–pathogen interaction. Compared with the control, crop rotation significantly decreased the relative abundance of the inorganic phosphorus solubilization gene (gcd) and the phosphorus transport gene (upgE) and increased the abundance of organic phosphorus mineralization genes (phoA and phyA). Based on these results, we concluded that the composition of the soil microbial community and functional genes can be altered by crop rotation, and spring peanut→winter wheat-summer maize and spring sweet potato→winter wheat-summer maize had more significant effects. This study provided a reference for the selection of crop rotations in the North China Plain based on the soil microbial community and its function.  相似文献   

5.
The aim of this study was to investigate influences of six-year past application rates of nitrogen and a catch crop, sweet corn (Zea mays L. ssp. Saccharata Sturt), on soil microbial community and diversity in a greenhouse-based intensive vegetable soil in eastern China. Soil electrical conductivity, pH, mineral nitrogen, phospholipid fatty acids (PLFA) profiles and carbon source utilization patterns under five annually past nitrogen rates (0, 348, 522, 696 and 870?kg?nitrogen?ha?1) were evaluated after the establishment of sweet corn during 1–1.5-month fallow period over three-year tomato/cucumber/celery rotations. The past nitrogen application rates exerted significant effects on soil electrical conductivity, pH, nitrate-nitrogen, ammonium-nitrogen and carbon source utilization patterns, but not on PLFAs profiles. The sweet corn had a significant effect on soil chemical properties, total and actinobacterial PLFAs, but not on carbon source utilization patterns. Soil electrical conductivity, nitrate-nitrogen and the total PLFAs decreased whilst soil organic carbon, pH and the actinobacterial PLFAs increased after the establishment of sweet corn. Soil microbial functional diversity from carbon source utilization patterns and actinobacterial PLFAs were greatest after the establishment of sweet corn at a 60% of the conventional nitrogen rate (i.e. 522?kg?nitrogen?ha?1). Soil electrical conductivity and ammonium-nitrogen were two key factors to determine carbon source utilization patterns, whilst soil pH was the key factor to determine PLFAs profiles. A combination of the catch crop sweet corn during summer fallow and a 60% of the conventional nitrogen rate is a sustainable pathway of utilizing greenhouse-based intensive vegetable soils in eastern China.  相似文献   

6.
We studied the impact of continous barley and a 4-year rotation consisting of fababean, barley after fababean, barley intercropped with field pea, and barley after the intercrop on the soil biological properties of a Gray Luvisol. The crop rotations were estabilshed in 1988 and fertilizer N was not applied to any plots. The plots were sampled five times over the growing season in 1990. The average size of microbial N over the growing season was 20% greater when barley followed fababean or intercropping than in the fababean and intercropped plots. It was 14.9% greater when barley followed fababean or intercropping than in the continuous barley plots. Protozoa populations were greater when barley followed intercropping than in the continuous barley plots, but an inverse trend was found for nematode populations. Average size of the mineral N over the growing season in the 4-year rotation plots was 32% greater than in the continuous barley plots. It was also 23% greater when barley followed fababean or intercropping than in the fababean and intercropped plots. Plant N in the latter plots was significantly greater than in the former and in continuous barley plots; therefore legumes contributed N to the crop rotation through biological N fixation and addition of N-rich crop residues. Significantly higher mineral N and microbial N in the barley of rotation plots than in continuous barley plots indicate that rotation systems with annual legumes alter soil biological properties and N availability.  相似文献   

7.
Microbial community responses to alternative management may be indicative of soil quality change. In this study, soils were collected from research plots over 2 years and from commercial grower fields over 1 year. Treatments at the sites included 1-9 years of either winter cover cropping or winter fallow practices. Soils were assayed for microbial fatty acid methyl esters (FAMEs), direct count microscopy and Biolog substrate utilization potentials to assess management and environmental influences on soil communities. The strongest influence was season. Soils in early spring (prior to termination of the cover crop) utilized fewer carboxylic acids and generally were enriched in eukaryotic FAMEs, whereas proportionally more bacterial FAMEs were detected in soils at canopy closure and harvest of the summer vegetable crop. Within a season, community FAME and Biolog patterns were related to field properties. FAME profiles from grower fields in early spring and harvest were correlated significantly with soil texture, cation exchange capacity, and carbon content. Changes in community structure and Biolog potential occurred in some soils in response to winter cover crops, although effects were not observed until cover crop incorporation. Greater amounts of fungal and protozoan FAME markers were detected in some cover-cropped soils compared to winter fallow soils. Cover crop residues increased FAME diversity at one research station and Biolog diversity at two research stations and the grower fields. Although seasonal and field-dependent factors are major determinants of microbial community structure, shifts can occur as soil physical and chemical properties change in response to alternative practices, as demonstrated by this study.  相似文献   

8.
保护性耕作对黑土微生物群落的影响   总被引:9,自引:2,他引:7  
耕作方式通过影响土壤微生物群落而影响土壤生态系统过程。本研究以传统耕作玉米连作处理为对照,通过测定土壤微生物量碳及磷脂脂肪酸含量,分析了保护性耕作(包括免耕玉米连作和免耕大豆-玉米轮作)对黑土微生物群落的影响。结果表明,保护性耕作可显著增加土壤表层(0~5cm)全碳、全氮、水溶性有机碳、碱解氮和微生物量碳(P0.05),为微生物代谢提供了丰富的资源。同时,保护性耕作显著提高了土壤表层(0~5cm)总脂肪酸量、真菌和细菌生物量(P0.05),提高了土壤的真菌/细菌值,有利于农田土壤生态系统的稳定性。研究结果对于探讨保护性耕作的内在机制具有重要意义。  相似文献   

9.
《Applied soil ecology》2007,37(2-3):216-223
Olive mill wastewater (OMW) creates a disposal problem. The large amounts generated, combined with the high phenol and chemical oxygen demand concentrations, are the main difficulties in finding a solution for the management of these wastewaters. We investigated the short-term effect of spreading OMW on the soil surface of an olive grove on the soil microbial communities. Analyse of ester-linked fatty acid methyl ester (EL-FAME) were used to assess variation in soil microbial community structure after agronomic application of OMW. EL-FAME analysis showed significant shifts of specific groups of fatty acids 30 days after application of OMW to a field of olive trees at rates of 0 (control soil), 30, 60, 100, and 150 m3 ha−1 of OMW. In particular, the branched saturated fatty acids indicative of Gram-positive bacteria decreased and the unsaturated fatty acids commonly found in Gram-negative bacteria and fungi increased. The fungal/bacterial ratio measured increased significantly with increasing OMW. Lower cy19/18:1ω7c and cy17/16:1ω7c ratios were found in the amended soil than the control soil, and we interpret that as an indication that nutrient availability may be more limiting in the control soil. Similarly, the relative abundances of monounsaturated fatty acids increased with added OMW, and this is consistent with the presence of high substrate availability in OMW-treated soil. Principal Components Analysis of the FAME profiles showed discrimination between the control soil and OMW amended soil. Differences in fatty acid profiles between OMW-treated soil and control soil suggests that amendment of soil with OMW favors specific groups of organisms. To our knowledge, this is the first report of alterations in the FAME profile in soils due to agronomic application of OMW.  相似文献   

10.
In the Canadian prairies, current recommendations allow growing of canola or pea once every 4 years on a particular field to effectively mange diseases, insects, and weeds, but producers are interested in increasing frequency of these crops to optimize economic returns. A 4-year (from 1999 and 2002) field experiment, with treatments consisting of rotations of monoculture canola and pea to rotations that contained these crops every 2, 3, and 4 years with wheat and flax, was conducted on a Black Chernozem (Udic Boroll) silty clay at Melfort, Saskatchewan, to determine the impact of frequency of broad-leaf crops canola and pea in various crop rotations on accumulation and distribution of nitrate nitrogen (N) and extractable phosphorus (P) in the soil profile after 4 years. Two cultivars of canola, an herbicide-tolerant blackleg- resistant variety (hybrid) and a conventional (not herbicide tolerant) open-pollinated, blackleg-susceptible variety (OP), were included. Mean effects of crop rotation or rotation length on soil nitrate N were not significant, though the amount of soil nitrate N in different soil layers tended to be greatest with monocultures and least in the 4-year rotation with flax. Effects of crop phase (i.e., individual crops that make up the rotation)?×?crop rotation interactions on soil nitrate N were significant for all layers in the soil profile. The amounts of nitrate N in soil after canola, especially hybrid canola, were lowest in most crop rotations, suggesting the importance of canola in minimizing downward movement of nitrate N in the soil profile. Soil extractable P in the 0- to 15-cm layer was least with monocultures and greatest in the 4-year rotation with flax. There was a significant effect of crop phase on soil extractable P, but soil P levels varied with crop phase in different rotations. In conclusion, residual nitrate N in soil can be reduced by extending crop rotations and using high-yielding disease-resistant canola cultivars, most likely by improving crop yields.  相似文献   

11.
A better understanding of soil microbial processes is required to improve the synchrony between nutrient release from plant residues and crop demand. Phospholipid fatty acid analysis was used to investigate the effect of two crop rotations (continuous maize and maize-crotalaria rotation) and P fertilization (0 and 50 kg P ha−1 yr−1, applied as triple superphosphate) on microbial community composition in a highly weathered soil from western Kenya. Microbial substrate use in soils from the field experiment was compared in incubation experiments. Higher levels of soil organic matter and microbial biomass in the maize-crotalaria rotation were connected with higher total amounts of phospholipid fatty acids and an increase in the relative abundances of indicators for fungi and gram-negative bacteria. P fertilization changed the community profile only within the continuous maize treatment. The decomposition of glucose, cellulose and three plant residues (all added at 2.5 g C kg−1 soil) proceeded faster in soil from the maize-crotalaria rotation, but differences were mostly transient. Microbial P and N uptake within one week increased with the water-soluble carbon content of added plant residues. More P and N were taken up by the greater microbial biomass in soil from the maize-crotalaria rotation than from continuous maize. Re-mineralization of nutrients during the decline of the microbial biomass increased also with the initial biological activity of the soil, but occurred only for a high quality plant residue within the half year incubation period. Compared to the effect of crop rotation, P fertilization had a minor effect on microbial community composition and substrate use.  相似文献   

12.
We sampled soil at four sites in the Laguna Mountains in the western Sonoran Desert to test the effects of site and sample location (between or beneath plants) on fatty acid methyl ester (FAME) and carbon substrate ulilization (Biolog) profiles. The four sites differed in elevation, soil type, plant community composition, and plant percent cover. Soil pH decreased and plant density increased with elevation. Fertile islands, defined as areas beneath plants with greater soil resources than bare areas, are present at all sites, but are most pronounced at lower elevations. Consistent with this pattern, fertile islands had the greatest influence on FAME and Biolog profiles at lower elevations. Based on the use of FAME biomarker and principal components analyses, we found that soil microbial communities between plants at the lowest elevation had proportionally more Gram-negative bacteria than all other soils. At the higher elevation sites there were few differences in FAME profiles of soils sampled between vs. beneath plants. Differences in FAME profiles under plants among the four sites were small, suggesting that the plant influence per se is more important than plant type in controlling FAME profiles. Since microbial biomass carbon was correlated with FAME number (r=0.85,P<0.0001) and with FAME named (r=0.88,P<0.0001) and total areas (r=0.84,P<0.0001), we standardized the FAME data to ensure that differences in FAME profiles among samples were not the result of differences in microbial biomass. Differences in microbial substrate utilization profiles among sampling locations were greatest between samples taken under vs. between plants at the two lower elevation sites. Microbial substrate utilization profiles, therefore, also seem to be influenced more by the presence of plants than by specific plant type.  相似文献   

13.
不同草田轮作模式对土壤养分动态的影响   总被引:1,自引:0,他引:1  
在宁南旱区10年生苜蓿草地上进行了为期3a的27种不同草田轮作模式试验,研究了土壤有机质、氮、磷的动态变化特征。结果表明,与保持生长的对照苜蓿草地相比,苜蓿草地实行草田轮作后,有机质持续下降,轮作第1,3a的马铃薯,第2a的春小麦对土壤有机质有明显影响,马铃薯连作模式使土壤有机质降幅最大;不同轮作模式的土壤全氮变化有较大差异,谷子和春小麦等禾本科作物单一连作模式对土壤氮素造成偏耗;不同轮作模式碱解氮总体上呈下降趋势,轮作作物产量水平直接影响土壤碱解氮含量的高低。全磷呈先降后升又降趋势。作物轮作能够提高苜蓿草地土壤氮、磷有效性。为了高效、协调和可持续地利用水肥,应选择合理的草田轮作模式。  相似文献   

14.
The aims of this study were to investigate soil microbial community characteristics and their interrelationships with soil geochemistry under different farmlands in Shouguang, China. The traditional dilution plate counts, BIOLOG system, and fatty acid methyl ester (FAME) analyses were used to assess microbial populations, substrate utilization, and fatty acid profiles. The number of aerobic heterotrophic bacteria varied significantly among untilled land, maize, and mungbean fields. The amounts of actinomycetes, fungal fatty acids, and Gram-positive/Gram-negative bacteria ratios varied greatly among celery, tomato, and aubergine fields. In the tomato field, the soil microbial community characteristics were significantly different from other fields. Principal component analysis of BIOLOG and FAME data revealed differences in the catabolic capability and fatty acid profiles of soil microbial communities among different farmlands. Spearman correlation analyses showed that in these sand clay soils of Shouguang, microbial communities in different farmlands were closely correlated with soil geochemical elements, moisture, and organic matter.  相似文献   

15.
 Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH4-N, CO2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns. Received: 8 March 2000  相似文献   

16.
Flexibility in crop rotation planning allows canola and pea producers to adapt to changing management practices and marketing opportunities. Current recommendations in western Canada are to follow a 1 in 4-yr rotation for canola or pea on a particular field, but producers are interested in increasing frequency of these crops. The objective of this study was to determine the impacts of frequency of broad-leaf crops canola and pea and fungicide application in various crop rotations on accumulation and distribution of nitrate nitrogen (N) and extractable phosphorus (P) in the soil profile after 8 yr on a Dark Brown Chernozem (Typic Boroll) loam at Scott, Saskatchewan. The field experiment (from 1998 and 2005) contained monoculture canola and monoculture pea compared with rotations that contained these crops every 2, 3, and 4 yr with wheat and/or flax. Two cultivars of canola were included, an herbicide-tolerant and blackleg-resistant hybrid, and a conventional (not herbicide tolerant) open-pollinated, blackleg-susceptible (OP) cultivar. Subplots were fungicide treatments that attempted to control both blackleg and sclerotinia stem rot in canola and mycosphaerella blight in pea. Residual soil nitrate N in most layers and extractable P in many layers were significantly affected by crop rotation or rotation length, with the greatest amounts after monocultures. Fungicide application resulted in decreased amount of residual soil nitrate N, but it had no effect on soil extractable P. Crop phase (i.e., individual crops that make up the rotation) had a significant effect on soil nitrate N in many crop rotations; for example, residual soil nitrate N tended to be greatest after pea or OP canola and also after flax in the 4-yr rotation with flax. Crop phase had no effect on soil extractable P in any crop rotation. The lower amounts of residual soil nitrate N were usually associated with greater cumulative seed yields, and more so with greater cumulative N removal in seed in various crop rotations and phases within rotations. In conclusion, the findings suggest that accumulation of residual nutrients in soil, especially nitrate N, can be minimized by extending crop rotations, using high-yielding disease-resistant canola cultivars, and applying fungicides in years with weather conditions conducive to diseases.  相似文献   

17.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

18.
19.
《土壤圈》2016,(2)
Cover crops can have beneficial effects on soil microbiology by increasing carbon(C) supply,but these beneficial effects can be modulated by precipitation conditions.The objective of this study was to compare a fallow-winter wheat {TYiticum aestivum L.) rotation to several cover crop-winter wheat rotations under rainfed and irrigated conditions in the semiarid US High Plains.Experiments were carried out at two sites,Sidney in Nebraska,and Akron in Colorado,USA,with three times of soil sampling in2012-2013 at cover crop termination,wheat planting,and wheat maturity.The experiments included four single-species cover crops,a 10-species mixture,and a fallow treatment.The variables measured were soil C and nitrogen(N),soil community structure by fatty acid methyl ester(FAME) profiles,and soil fi-glucosidase,P-glucosaminidase,and phosphodiesterase activities.The fallow treatment,devoid of living plants,reduced the concentrations of most FAMEs at cover crop termination.The total FAME concentration was correlated with cover crop biomass(R = 0.62 at Sidney and 0.44 at Akron).By the time of wheat planting,there was a beneficial effect of irrigation,which caused an increase in mycorrhizal and protozoan markers.At wheat maturity,the cover crop and irrigation effects on soil FAMEs had subsided,but irrigation had a positive effect on the fi-glucosidase and phosphodiesterase activities at Akron,which was the drier of the two sites.Cover crops and irrigation were slow to impact soil C concentration.Our results show that cover crops had a short-lived effect on soil microbial communities in semiarid wheat-based rotations and irrigation could enhance soil enzyme activity.In the semiarid environment,longer time spans may have been needed to see beneficial effects of cover crops on soil microbial community structure,soil enzyme activities,and soil C sequestration.  相似文献   

20.
Increased use of conservation tillage is being considered as a way to sequester atmospheric C in the soil. However, little information exists on the effect of rotation and its interaction with tillage on soil organic carbon (SOC). A research trial with combinations of rotations and tillage treatments was sampled 20 years after its establishment to assess the effects on SOC sequestration in a typic Hapludalf in southern Ontario, Canada. The cropping treatments included continuous corn (zea mays L.), six rotations comprised of 2 years of corn following 2 years of another crop or crop sequence, and continuous alfalfa (Medicago sativa L.). Each rotation was split into either fall moldboard plow (MP) or fall chisel plow (CP) treatments. Continuous alfalfa was plowed and replanted every 4 years. Soil samples were taken incrementally to a depth of 40 cm and SOC and bulk density determined. The average SOC concentration (0–40 cm) was greatest in continuous alfalfa (18.0 g C kg−1). The treatments of soybean (Glycine max L.Merr.)+winterwheat (Triticum aestivum L.) or barley+barley (Trifolium pratense L.) (interseeded with red clover) followed by 2 years of corn had higher SOC concentrations (17.2–17.3 g C kg−1) than continuous corn and the treatments of 2 years of corn following 2 years of alfalfa or soybean (16.4–16.5 g C kg−1). The rotation of 2 years of barley followed by 2 years of corn had the lowest SOC concentrations (15.2 g C kg−1). On an equivalent mass basis, the rotations of soybean+winterwheat or barley+barley (underseeded with red clover) followed by 2 years of corn, had 2–9 Mg ha−1 more C than the other corn-based rotations. Including red clover in the winter wheat seemed to accelerate the rate of C mineralization compared to winter wheat without red clover; whereas interseeding red clover with barley increased SOC contents compared to excluding red clover in the barley rotation. More SOC was found in the top 10 cm and less in the 10–20 cm depth of the CP than in the MP soils. However, the CP did not increase the SOC content (0–20 cm) above that of MP indicating that this form of reduced tillage did not increase C sequestration in any of the rotations on this soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号