首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In order to enhance growth, survival and quality during early juvenile stages of marine fish it is important to avoid lipid oxidation problems that are known to cause pathologies and disease. The aim of the present study was to characterize and compare the antioxidant systems in juvenile marine fish of commercial importance in European aquaculture, namely turbot (Scophthalmus maximus), halibut (Hippoglossus hippoglossus) and gilthead sea bream (Sparus aurata). The experiment investigated the interaction of the dietary antioxidant micronutrient, vitamin E, with antioxidant defence systems. Fish were fed with diets of identical unsaturation index supplemented with graded amounts of vitamin E. The relationships between dietary and subsequent tissue vitamin E levels were determined as well as the effects of vitamin E supplementation on lipid and fatty acid compositions of both liver and whole fish, on the activities of the liver antioxidant defence enzymes, and on the levels of liver and whole body lipid peroxidation products, malondialdehyde (thiobarbituric acid reactive substances, TBARS) and isoprostanes. Growth and survival was only significantly affected in sea bream where feeding the diet with the lowest vitamin E resulted in decreased survival and growth. A gradation was observed in tissue vitamin E and polyunsaturated fatty acid (PUFA)/vitamin E levels in response to dietary vitamin E levels in all species. The activities of the main radical scavenging enzymes in the liver, catalase, superoxide dismutase and glutathione peroxidase generally reflected dietary and tissue vitamin E levels being highest in fish fed with the lowest level of vitamin E. The indicators of lipid peroxidation gave consistent results in all three species, generally being highest in fish fed with the unsupplemented diet and generally lowest in fish fed with the diet with highest vitamin E. In this respect, isoprostane levels generally paralleled TBARS levels supporting their value as indicators of oxidative stress in fish. Overall the relationships observed were logical in that decreased dietary vitamin E led to decreased levels of tissue vitamin E, and generally higher activities of the liver antioxidant enzymes and higher levels of lipid peroxides.  相似文献   

2.
Lipid peroxidation, specifically polyunsaturated fatty acid (PUFA) oxidation is highly deleterious, resulting in damage to cellular biomembranes, and may be a principal cause of several diseases in fish including jaundice and nutritional muscular dystrophy. Tissue lipid PUFA content and composition are critical factors in lipid peroxidation, as is the level of endogenous antioxidant molecules such as vitamin E. The primary objective of the present study was the characterization of antioxidant systems in a cultured juvenile marine fish, gilthead sea bream (Sparus aurata) with the underlying aim to understand how to avoid oxidation problems that may cause pathologies and disease and so to enhance growth and quality of early ongrowing stages. Juvenile sea bream were fed diets having either high or low levels of fish oil and supplemented or basal levels of vitamin E with PUFA/vitamin E ratios ranging from 117±12 in the diet with low PUFA supplemented with vitamin E to 745±48 in the diet with high PUFA with no additional vitamin E. None of the diets had serious deleterious effects on growth or survival of the fish, but the different dietary regimes were effective in significantly altering the PUFA/vitamin E ratios in the fish livers with values ranging from 5.7±0.4 in fish fed the diet with low PUFA supplemented with vitamin E to 91.1±13.2 in fish fed the diet with high PUFA with no additional vitamin E. This had effects on the peroxidation status of the fish as indicated by the significantly altered levels of in vivo lipid peroxidation products measured in liver, with fish fed the diet rich in PUFA and low in vitamin E showing significantly higher values of thiobarbituric acid reactive substances (TBARS) and isoprostanes. The isoprostane levels generally followed the same pattern as the TBARS levels supporting its value as an indicator of in vivo oxidative stress in fish, as it is in mammals. However, few significant effects on antioxidant enzyme activities were observed suggesting that more severe conditions may be required to affect these activities such as increasing the PUFA/vitamin E ratio or by increasing peroxidative stress through the feeding of oxidized oils.  相似文献   

3.
A 9-week feeding experiment was conducted to evaluate the effects of dietary vitamin E supplementation on growth, lipid peroxidation and fatty acid composition of black sea bream fed oxidized oil. The FL and OL diets contained fresh fish oil and oxidized oil, respectively, without additional vitamin E supplementation. Another four α-tocopherol levels (150, 250, 450 and 800 mg kg−1 diet) were used within the OL diet, giving a total of six experimental diets. Fish were hand-fed to apparent satiation twice daily. At end of the trial, the weight gain and survival rate of fish were significantly reduced by diets with oxidized oil, whereas hepatosomatic index was remarkably high in fish fed oxidized oil diet. However, vitamin E supplementation to diet significantly improved growth performance and increased vitamin E content in the liver. Although, liver thiobarbituric acid reactive substances and docosahexaenoic acid were significantly increased by dietary oxidized oil, their levels were reduced by dietary vitamin E supplementation. Our results indicate that the fish were performing the best at intermediate concentrations of α-tocopherol and a dose of >150 mg α-tocopherol kg−1 diet could reduce lipid peroxidation and improve fish growth performance when oxidized oils exist in diet.  相似文献   

4.
Turbot and Atlantic halibut are highly valued fish species. However,very little is known about fillet shelf-life characteristics associated withboth species. Thus, fillet -tocopherol content and proximate compositionof wild turbot (1.5 kg) and Atlantic halibut (1.1 kg)caught off the south coast of Ireland and the north-west coast of Iceland,respectively, were investigated. In addition, the susceptibility of fillets, storedunder retail conditions, to lipid oxidation and colour change was studied.Proximate composition analysis showed that turbot had significantly highermoisture (P < 0.001) and lower protein (P < 0.001) contents compared toAtlantic halibut. Atlantic halibut incorporated significantly higher (P <0.001) levels of -tocopherol into fillets than turbot. Over 14 days ofstorage on ice, fillets from Atlantic halibut exhibited significantly lower (P =0.020) levels of lipid oxidation than those of turbot. However, malondialdehyde(MDA) concentrations were generally very low, never exceeding 0.6 gg–1 fillet. Turbot maintained a significantly higher (P< 0.001) pH over the storage period. The lightness (L* values) offillets from both species increased over 14 days of storage, but wassignificantly higher (P < 0.001) in Atlantic halibut than in turbot. Turbotdeveloped a relatively intense yellow colour during storage (decrease in hueangle and increase in b* values), whereas this was not the case forAtlantic halibut. The results of this study demonstrate that fillets of wildAtlantic halibut stored on ice, were less prone to lipid oxidation anddiscolouration than those of wild turbot. However, quality changes in turbotwere very small showing that both fish have tremendous shelf-life capacities interms of lipid oxidation. These findings are considered in the context of knownmaterial for farmed fish.  相似文献   

5.
An experiment was conducted to determine the effects of different levels of dietary vitamin C (VC) and E (VE) supplementation on fillet quality of red sea bream fed oxidized fish oil (OFO). Fish with an average body weight of 205.0 g were fed four test diets for 9 weeks. Control diet contained fresh fish oil (FFO) with 100 mg kg?1 of VE and 500 mg kg?1 of VC (FFO100E/500C). The other three diets contained OFO with varying levels of VE (mg kg?1) and VC (mg kg?1) (OFO100E/500C, OFO200E/500C and OFO200E/1000C). After feeding trial, two fillets from each fish by hand filleting were stored in a refrigerator at 4°C for 96 h during analyses. Results showed that fish fed OFO increased fillet thiobarbituric acid reactive substances (TBARS) and K‐value, and decreased fillet VC and VE concentrations during storage time. Supplementation of VC did not have any detectable effect on fillet quality. Increasing dietary VE supplementation increased fillet VE concentrations, reduced fillet TBARS and K‐value values of red sea bream. Therefore, we suggest that dietary supplementation of 200 mg kg?1 of vitamin E could improve fillet oxidative stability of red sea bream fed OFO.  相似文献   

6.
为研究饲料中添加姜黄素对大菱鲆幼鱼生长、体组成及血清抗氧化酶活力的影响,在饲料中分别添加0、0.02%、0.04%和0.06%的姜黄素,配制成4种等氮等脂的实验饲料。选择初始体质量(5.12±0.04)g大菱鲆幼鱼420尾,随机分成4组,每组3个重复,每个重复35尾鱼。每种饲料随机饲喂1组实验鱼,养殖周期为77 d。结果显示,饲料中添加姜黄素对大菱鲆幼鱼的成活率(SR)、特定生长率(SGR)、摄食量(FI)、肝体比(HSI)和脏体比(VSI)没有显著影响。饲料中添加姜黄素对鱼体水分含量无显著影响;饲料中添加姜黄素后,鱼体脂肪含量显著下降,而肝脏和肌肉脂肪含量则呈显著上升趋势;0.02%和0.06%姜黄素添加组鱼体蛋白质含量显著高于0.04%组。0.06%姜黄素添加组的血清超氧化物歧化酶(SOD)活力显著高于其他组;姜黄素添加组的血清过氧化氢酶(CAT)活力高于对照组,但各组间差异不显著;饲料中添加姜黄素后,血清丙二醛(MDA)含量和谷胱甘肽酶(GSH)活力呈显著降低的趋势。研究表明,饲料中添加姜黄素对大菱鲆幼鱼成活和生长无显著影响,但能够显著提高幼鱼的血清抗氧化能力。  相似文献   

7.
Four semi-purified diets, containing crystalline amino acids (CAAs), were fed to juvenile red sea bream, Pagrus major in order to ascertain the ideal dietary amino acid pattern for this species. A control diet containing 50% casein–gelatin as protein sources, but no CAAs were fed to the fish. The other diets contained 30% casein–gelatin and 20% CAAs. CAAs were added to diets to simulate with amino acid pattern of the red sea bream eggs protein (REP), red sea bream larvae whole body protein (RLP), red sea bream juvenile whole body protein (RJP), and brown fishmeal protein (BFP). The juveniles (average initial body weight, 1.58 ± 0.01 g) were maintained in triplicate tanks and fed twice daily for 30 days. The highest weight gain was observed in juveniles fed the RJP diet. No significant difference was observed in juveniles fed the RLP and BFP diet. Feed efficiency ratio, protein efficiency ratio and amino acid retention in the whole body were significantly (p < 0.05) affected by the simulated dietary amino acid patterns. The essential amino acid profile and A/E ratios of the whole body after the growth trial showed little difference among the dietary treatments. The results suggest that red sea bream juveniles are able to utilize high amounts of CAA in coated form. The amino acid pattern of RJP could be used as an appropriate of reference dietary amino acid for this species.  相似文献   

8.
To assess the effect of dietary ascorbate on lipid metabolism, 1-year black sea bream (Acanthopagrus schlegelii) were reared on a casein-based purified diet and an ascorbate fortified diet (1,100 mg of l-ascorbyl-2- monophosphate-Mg/kg diet). The fortified ascorbate was effectively incorporated into the fish body and elevated muscle carnitine content. Fortifications of dietary ascorbate depressed activities of glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase as lipogenic enzymes in the hepatopancreas and intraperitoneal fat body. Starvation after feeding experiment activated carnitine palmitoyltransferase as a lipolysis enzyme in the hepatopancreas in both control and vitamin C(VC) groups, while the lipolysis activity was significantly higher in VC group. These results confirmed that dietary ascorbate depressed lipogenesis and activated lipolysis, i.e., influenced the lipid metabolism of black sea bream.  相似文献   

9.
A 3 × 3 factorial experiment was conducted on Labeo rohita fingerlings to evaluate the effect of dietary oxidized oil and vitamin E. Nine experimental diets were made, based on three degrees of oil oxidation (fresh oil, low oil oxidation and high oil oxidation), and each level of oxidation was further supplemented with three levels of vitamin E (0, 100 and 1,000 mg/kg). Weight gain% and specific growth rate (SGR) of fish fed fresh fish oil and low oil oxidation level were significantly higher than highly oxidized oil. Moreover, vitamin E supplemented fish also showed better growth performance. Oil oxidation caused a significant reduction in the concentrations of α‐tocopherol and increase in TBARS level and antioxidant enzyme activities in fish liver and muscles. However, increasing the dietary vitamin E abrogated these effects. Dietary vitamin E supplementation improved the fatty acid, more specifically polyunsaturated fatty acids profile of oxidized oil fed fish. In conclusion, dietary oxidized fish oil increased the oxidative stress condition of fish but supplementation of high dose of vitamin E prevented lipid oxidation, improved growth performance and fatty acid profile of L. rohita.  相似文献   

10.
维生素E及脂肪源对大菱鲆非特异性免疫的影响   总被引:4,自引:0,他引:4  
在大菱鲆饲料中分别添加鲤鱼鱼油及花生油作脂肪源,每种脂肪中添加两个水平的维生素E(8mg/kg和300mg/kg维生素E醋酸酯),饲养大菱鲆84d,探讨其对大菱鲆非特异性免疫的影响。结果发现,(1)以鲤鱼鱼油为脂肪源的添加高剂量的维生素E能提高大菱鲆血清补体活性,而以花生油为脂肪源的饲料添加高剂量的维生素E不影响大菱鲆血清补体活性;(2)以鲤鱼鱼油和花生油为脂肪源的饲料添加高剂量的维生素E不影响大菱鲆中性粒细胞的吞噬率及白细胞总数;(3)以鲤鱼鱼油为脂肪源的饲料添加高剂量的维生素E能提高大菱鲆的溶茵酶活性,但随着时间推移其影响减弱;(4)饲喂n-3HUFA含量高的饲料,对大菱鲆腹水病的抵抗能力高于n-3HUFA含量低的饲料。  相似文献   

11.
European sea bass (Dicentrarchus labrax) and gilthead sea bream(Sparus aurata) are amongst the most important finfish speciescultured in the Mediterranean region. Production of these species isnowadays a well-controlled process, but knowledge of their nutritionalrequirements is still very limited. Nevertheless, a considerable amountof data has been accumulated in recent years, and the purpose of thispaper is to review the recent advances on the nutritional requirementsof sea bass and sea bream. The optimum protein to energy ratio of thediets of sea bass and sea bream seem to be higher than for salmonids,and there is some evidence that high dietary lipid levels have nobeneficial effects on fish performances. Although the essential aminoacid requirements were estimated by the ideal protein method, data basedon the dose-response method is only available for a few amino acids.Essential fatty acid requirements were estimated for sea bream juvenilesbut data is lacking for sea bass. Vitamin and mineral requirements ofthese species are practically unknown. Although the importance ofbroodstock nutrition on gonadal development, spawning and egg quality isrecognized, few studies were done to elucidate these aspects. The recentdevelopment of microparticulate diets for larvae will contribute to theaccurate evaluation of their nutritional requirements.  相似文献   

12.
A 50‐day feeding trial was conducted to determine the effects of dietary oxidized fish oil (OFO) and vitamin C (VC) on growth and oxidative stress in juvenile red sea bream. Test diets were formulated with 2 degrees of peroxide value (23 and 29 meq kg?1) combined with 3 levels of VC (0, 400 and 800 ppm). No significant difference was found on growth performance between fish fed OFO with 400 or 800 mg VC and the control group that fed a diet with fresh fish oil after 50 days. However, fish fed OFO without VC supplement indicated significantly poor growth than the control group. Liver and muscle thiobarbituric acid reactive substances were reduced by increased VC intake of fish. Fish fed diets containing low OFO with 400 and 800 mg VC, high OFO with 800 mg VC, and fresh fish oil are allocated in the zone of high resistance against oxidative stress together with low oxidative stress condition. On the other hand, no VC supplemented group was under the highest oxidative stress condition. In conclusion, dietary oxidized lipid increased the oxidative stress condition of fish, but more than 400 mg VC kg?1 of dietary supplement improved growth and health of juvenile red sea bream.  相似文献   

13.
The effects of oxidized dietary lipid and the role of vitamin E on the growth performance, blood parameters and body composition of juvenile Atlantic cod (Gadus morhua) were evaluated over a 9‐week feeding period. Four isonitrogenous experimental diets containing fresh or oxidized fish oil with or without added vitamin E (α‐tocopherol or mixed tocopherols) were fed to juvenile cod. The oxidized lipid used had a peroxide value of 94 mEq kg?1 oil. No significant (P>0.05) differences in growth performance (weight gain and specific growth rate) or feed utilization (feed consumption and feed efficiency ratio) were observed when oxidized dietary lipid was used. The hepatosomatic index (HSI), viscerosomatic index (VSI) and haematocrit did not show any significant (P>0.05) differences among the treatments. However, erythrocyte osmotic fragility (EOF), referred to as susceptibility to haemolysis, of fish fed oxidized oil without added vitamin E was high in comparison with those fed unoxidized oil. Supplementation with α‐tocopherol appeared to decrease haemolysis, but mixed tocopherols had no significant (P>0.05) effect on EOF. The proximate composition of fish whole body was also affected by diet treatment. Fatty acid composition of liver total lipid reflected that of dietary lipid. Variations in tissue (liver and muscle) fatty acid composition among the treatments followed the same trend as those of the dietary fatty acids. Fish fed fresh oil had a higher proportion of polyunsaturated fatty acids (PUFA) in muscle and liver lipid than those fed oxidized oil. The results suggest that oxidized dietary oil affected juvenile Atlantic cod in certain tissues and that these effects could be alleviated by supplementation of sufficient amounts of vitamin E in the diet.  相似文献   

14.
Effects of dietary l ‐carnitine were studied in juvenile black sea bream (Sparus macrocephalus). The semipurified basal diet [crude protein 450 g kg?1 dry matter (DM); crude lipid 126 g kg?1 DM] was formulated to choose white fishmeal as the protein source and fish oil plus corn oil (1 : 1) as the lipid source. Six diets (control + diets 1–5) containing 0.1, 0.12, 0.16, 0.24, 0.39 and 1.1 g of l ‐carnitine kg?1 diet were fed to triplicate groups of black sea bream (initial weight 13.10 ± 0.05 g) for 8 weeks. At the end of the feeding trial, growth performance, body composition and antioxidant status were determined. The results showed that relative growth rate (RGR) was significantly improved by the elevation of dietary l ‐carnitine level from 0.1 to 0.24 g kg?1, but decreased with further increment (P < 0.05). Lipid content decreased significantly (P < 0.05) in the dorsal muscle whereas increased (P < 0.05) in the liver with the addition of dietary l ‐carnitine. Dietary l ‐carnitine supplements elevated enzymatic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione‐S‐transferase, GST) activities (P < 0.05) yet decreased the content of non‐enzymatic factor, total sulphydryl groups (TSH) (P < 0.05). In summary, the optimum dietary l ‐carnitine level was 0.284 g kg?1 diet by second‐polynomial regression analysis based on RGR (y = ?647.4x2 +367.97x + 234.55; R2 = 0.977, x = dietary l ‐carnitine levels, y = RGR), and dietary l ‐carnitine addition within the levels adopted in our study could depress lipid peroxidation in tissues of juvenile black sea bream.  相似文献   

15.
A study was conducted to determine the effect of increasing dietary levels of fish oil on vitamin E requirement and their effect on growth performance, liver vitamin E status, and tissue proximate and fatty acid compositions of channel catfish. Basal purified diets (42% protein and 3,800 kcal DE/kg) supplemented with 6, 10, and 14% menhaden fish oil were each supplemented with 50, 100, and 200 mg vitamin E/kg (3 × 3 factorial experiment). Each diet was fed to juvenile channel catfish in three random aquaria to apparent satiation twice daily for 12 weeks. Weight gain, feed intake, and feed efficiency ratio were not affected by dietary levels of fish oil, vitamin E, or their interaction. Survival rate at the end of week 12 was significantly lower for fish fed diets containing 14% fish oil, regardless of vitamin E content. Whole-body moisture significantly decreased and lipid increased when dietary lipid levels were increased to 10 or 14%. Dietary vitamin E levels had no effect on body proximate composition. Lipid content of liver was not influenced by dietary levels of fish oil and vitamin E or their interaction. Hepatosomatic index significantly decreased with increasing lipid levels but was not affected by dietary levels of vitamin E. Liver vitamin E increased with increasing dietary vitamin E but decreased with increasing fish oil levels. Fatty acid composition of whole body and liver reflected that of dietary lipid but was not influenced by dietary levels of vitamin E. Whole-body saturates increased, whereas MUFA decreased with increasing dietary levels of fish oil. Liver saturates were not affected by fish oil levels, but MUFA and n-6 decreased and increased, respectively, with increasing fish oil levels. Total n-3 and n-3 HUFA in both tissues increased with increasing fish oil levels in diets, but liver stored much higher levels of these fatty acids.  相似文献   

16.
A 309 days feeding experiment was carried out on gilthead sea bream fingerlings (initial weight 14.7±4.4 g) to evaluate effects of substitution of fish oil with soybean oil in diets on growth and sensory characteristics and muscle fatty acid composition. Duplicate groups of fish were hand fed with four isoenergetic and isonitrogenous diets (46% protein, 14% lipid and 22 MJ kg−1) in which 0%, 24%, 48% or 72% of the fish oil was replaced by soybean oil. Fish fed diet 72% reached a lower final weight (324 g) than fish fed diets 0%, 24% and 48% (349, 343 and 338 g respectively). Feed intake, protein efficiency ratio, body composition and economic profitability were not influenced by the amount of soybean oil in the diets, but muscle fatty acid composition differed with diets. Panellists observed significant sensory differences between fish fed diet 0% and diet 72%. These results verified the possibility of feeding sea bream until they reached commercial weight with a 48% dietary substitution of fish oil for soybean oil.  相似文献   

17.
The objective of the present study was to investigate the combined effect of several dietary contents of vitamin E and polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid (DHA), on growth, survival, biochemical composition and tissue morphology of sea bass along early development. A feeding experiment was conducted in sea bass larvae using five different diets with the same proximate composition and different ratios of DHA concentrated fish oil [10, 30 and 50 g kg?1 dry weight (DW)] and vitamin E (α‐tocopherol acetate) (1500 and 3000 mg kg?1 DW). DHA was readily deposited in fish tissues and associated with higher sea bass mortalities probably because of increased peroxidation risks. Besides, the elevation of dietary DHA contents up to 5% severely increased the incidence of muscular lesions and the presence of ceroid pigment within hepatocytes. However, elevation of dietary vitamin E levels markedly reduced the incidence of these symptoms in sea bass, increasing the tissue content in several PUFA and improving growth and stress resistance. Moreover, when sea bass was fed diets containing high vitamin E levels, fish showed a significant improvement in growth when dietary DHA was raised from 1% to 3%. Therefore, in sea bass larvae, a ratio of 30 g kg?1 DHA and 3000 mg kg?1 vitamin E seems to be adequate to achieve a good larval performance and to avoid muscular lesions.  相似文献   

18.
The effect of different lipid compositions of live feed on the survival, growth rate and pigmentation success of turbot larvae, Scophthalmus maximus (L.), was investigated. Rotifers, Brachionus plicatilis, together with the algae Tetraselmis sp., were administered until day 12, and Artemia was fed until day 27. The experimentally treated live feeds were enriched with four formulated emulsions, resulting in a gradient in the relative contents of 3 HUFA (highly unsaturated fatty acids) and in DHA (docosahexaenoic acid, 22:6 3)/EPA (eicosapentaenoic acid, 20:5 3) ratios in both the rotifers and Artemia.There were no differences in larval growth rate, and only small differences in survival rate throughout the feeding experiment, probably because of satisfactory levels of 3 HUFA in the live feed to sustain growth and survival. A correlation was obtained between the percentage of completely pigmented 27 d old turbot and the DHA/EPA ratio in the total lipids of 12 d old larvae, which again was correlated with the corresponding ratio in the live feed used. The results suggest that normal pigmentation in turbot requires dietary DHA in the early larval feeding period, and that this requirement cannot be replaced by EPA.  相似文献   

19.
The present study investigated the distribution of α‐tocopherol (vitamin E) in fillets of turbot (Scophthalmus maximus) and Atlantic halibut (Hippoglossus hippoglossus). Turbot and Atlantic halibut were fed commercial diets, supplemented with different levels of α‐tocopheryl acetate at the dietary target levels of 100, 500 and 1000 mg α‐tocopheryl acetate kg?1 diet. The actual levels were 72, 547 and 969 for turbot, while halibut received 189, 613 and 875 mg α‐tocopheryl acetate kg?1 diet. Turbot were fed the diets for 24 weeks, while Atlantic halibut were fed for 20 weeks prior to slaughter. At the end of the feeding periods fish had reached a final weight of around 1 kg. Fish were slaughtered and filleted. From the four fillets obtained per fish, 22 samples were taken from designated areas and analysed for their α‐tocopherol content. The average concentrations of α‐tocopherol incorporated in turbot and Atlantic halibut increased with increasing levels of α‐tocopheryl acetate in the diet. Atlantic halibut had significantly (P < 0.05) more α‐tocopherol in positions 2/II and 1/I than in position 9/IX. Turbot had significantly (P < 0.05) more α‐tocopherol in position 2/II than in positions 1/I, 4/IV and 11/XI. By mapping α‐tocopherol concentrations in fish fillets, a high degree of quality prediction may be established. Moreover, this study may help scientists in their choice of sampling position, when investigating if α‐tocopheryl acetate supplementation resulted in successful α‐tocopherol incorporation.  相似文献   

20.
A 60‐d feeding trial was conducted to evaluate the effects of different dietary oil sources on growth, fatty acid composition, peroxisome proliferator‐activated receptor (PPAR) gene expression levels, and antioxidant responses of blunt snout bream, Megalobrama amblycephala, fingerlings. Fish (average initial weight, 0.35 ± 0.01 g) were fed five experimental diets respectively containing fish oil (FO), soybean oil, canola oil, peanut oil, and palm oil (PaO). Results showed that body weight gain, specific growth rate, and feed conversion ratio did not significantly differ among treatments. Fish fed PaO diet showed significantly higher hepatosomatic index value and liver lipid content than those fed FO diet. The FO group showed significantly higher liver eicosapentaenoic acid (20:5n‐3) + docosahexaenoic acid (22:6n‐3) concentrations than other groups in both neutral lipid and polar lipid fractions. The mRNA expression levels of PPAR‐α and PPAR‐γ in the liver were significantly increased by feeding vegetable oil diets compared to FO. The activities of catalase, superoxide dismutase, and glutathione peroxidase in livers of fish fed PaO diet were lower than those fed FO diet. Meanwhile, PaO group had significantly lower malondialdehyde value than other groups. In conclusion, we suggested that a combination of FO and vegetable oil diet should be used in feed formulations for blunt snout bream fingerlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号