首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To compare gentamicin concentrations achieved in synovial fluid and joint tissues during IV administration and continuous intra-articular (IA) infusion of the tarsocrural joint in horses. ANIMALS: 18 horses with clinically normal tarsocrural joints. PROCEDURE: Horses were assigned to 3 groups (6 horses/group) and administered gentamicin (6.6 mg/kg, IV, q 24 h for 4 days; group 1), a continuous IA infusion of gentamicin into the tarsocrural joint (50 mg/h for 73 hours; group 2), or both treatments (group 3). Serum, synovial fluid, and joint tissue samples were collected for measurement of gentamicin at various time points during and 73 hours after initiation of treatment. Gentamicin concentrations were compared by use of a Kruskal-Wallis ANOVA. RESULTS: At 73 hours, mean +/- SE gentamicin concentrations in synovial fluid, synovial membrane, joint capsule, subchondral bone, and collateral ligament of group 1 horses were 11.5 +/- 1.5 microg/mL, 21.1 +/- 3.0 microg/g, 17.1 +/- 1.4 microg/g, 9.8 +/- 2.0 microg/g, and 5.9 +/- 0.7 microg/g, respectively. Corresponding concentrations in group 2 horses were 458.7 +/- 130.3 microg/mL, 496.8 +/- 126.5 microg/g, 128.5 +/- 74.2 microg/g, 99.4 +/- 47.3 microg/g, and 13.5 +/- 7.6 microg/g, respectively. Gentamicin concentrations in synovial fluid, synovial membrane, and joint capsule of group 1 horses were significantly lower than concentrations in those samples for horses in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IA infusion of gentamicin achieves higher drug concentrations in joint tissues of normal tarsocrural joints of horses, compared with concentrations after IV administration.  相似文献   

2.
Intraosseous (IO) infusion of the distal phalanx (IOIDP) as a delivery route targeting hoof lamellar tissue of standing, conscious horses was evaluated. Following sedation and regional nerve blockade in six Standardbred horses, a microdialysis (MD) probe was implanted into the hoof lamellar tissue of one forelimb. A purpose designed cannulated bone screw was introduced into the body of the distal phalanx, approximately 6 cm from the MD probe. Gentamicin solution (25 mg/mL) was infused at 20 μL/min through the bone screw for 2 h without the application of a tourniquet. MD and blood samples were collected at regular intervals and analysed for gentamicin concentrations.Gentamicin was present in lamellar tissue at much higher concentrations than peripheral serum. The mean concentration of gentamicin was 24.4, 20.5 and 4.4 μg/mL in extracellular fluid (ECF) and 0.28, 0.5 and 0.32 μg/mL in serum samples collected 60, 120 and 150 min after IOIDP was started, respectively. A clinically safe and efficacious IO drug delivery to the hoof lamellar tissue of standing, conscious horse was developed.  相似文献   

3.
This study investigated the influence of perfusate volume on antimicrobial concentration in synovial fluid following intravenous regional limb perfusion (IVRLP) and assessed the efficacy of low volume IVRLP. The front limbs of 9 horses were randomly assigned to 1 of 3 volume groups: 10 mL (Group 1), 30 mL (Group 2), or 60 mL (Group 3). A tourniquet was applied distal to the carpus and the limbs were perfused with 500 mg genta-micin diluted to the assigned volume via a catheter placed in the lateral palmar digital vein at the level of the proximal sesamoid bones. Synovial fluid samples were collected from the metacarpophalangeal joint at 30 minutes, followed by removal of the tourniquet. Gentamicin concentration in synovial fluid was detected using a fluorescence polarization immunoassay. There were no statistically significant differences among gentamicin concentrations in synovial fluid among perfusate volume groups. Mean gentamicin concentration in Group 1 (125.9 μg/mL) was higher than Group 2 (82.7 μg/mL) and Group 3 (56.1 μg/mL).  相似文献   

4.
Septic arthritis was induced in one antebrachiocarpal joint of seven horses by the intra-articular injection of 1 mL Staphylococcus aureus suspension containing a mean of 10(5) colony-forming units. Twenty-four hours after inoculation, four horses were treated by regional perfusion with 1 g of gentamicin sulfate, and three horses received 2.2 mg/kg gentamicin sulfate intravenously (IV) every 6 hours. Synovial fluid was collected for culture and cytology at regular intervals, and the synovial membranes were collected for culture and histologic examination at euthanasia 24 hours after the first treatment. Gentamicin concentration in the septic synovial fluid after three successful perfusions was 221.2 +/- 71.4 (SD) micrograms/mL; after gentamicin IV, it was 7.6 +/- 1.6 (SD) micrograms/mL. The mean leukocyte count in the inoculated joints decreased significantly by hour 24 in the successfully perfused joints. Terminal bacterial cultures of synovial fluid and synovial membranes were negative in two horses with successfully perfused joints. S. aureus was isolated from the infected joints in all three horses treated with gentamicin IV.  相似文献   

5.
OBJECTIVE: To determine the effect of intra-articular gentamicin-impregnated polymethylmethacrylate (PMMA) beads inserted in the equine tarsocrural joint on the synovial fluid, synovial lining, and cartilage, and to determine the peak and sustainable gentamicin concentrations in synovial fluid and plasma. STUDY DESIGN: Pharmacokinetic, cytologic, and histologic study of the effect of gentamicin-impregnated PMMA on normal equine tarsocrural joints. ANIMALS: Five healthy adult horses. METHODS: Gentamicin-impregnated PMMA bead strands (3 strands each of 40 beads, with each strand containing 100 mg gentamicin) were surgically inserted into one radiographically normal tarsocrural joint in 5 horses. Each horse had both joints flushed with 1 L of lactated Ringer's solution before bead administration. Synovial fluid total protein concentration, white blood cell (WBC) count, gentamicin concentration, synovial histology, cartilage integrity, and cartilage glycosaminoglycan (GAG) concentrations were determined. RESULTS: Gentamicin concentration (mean +/- SEM peak concentration, 27.9 +/- 2.27 microg/mL) occurred in the first 24 hours and remained above 2 microg/mL for 9 days. Gentamicin concentrations in control joints and the plasma remained below detectable levels. The synovial fluid WBC count for treated joints was increased compared with control joints for 72 hours, but was similar at day 6. The synovial protein concentration in gentamicin-treated joints remained increased for 21 days. Synovium in treated joints had diffuse synovitis, whereas control joints had less fibrovascular proliferation. Superficial cartilage erosion was present in all treated joints. There was no difference in the GAG content of treated and control joint cartilage. CONCLUSIONS: Short-term implantation of gentamicin (300 mg)-impregnated PMMA beads can provide therapeutic levels of gentamicin (>2 microg/mL) in the normal tarsocrural joint for 9 days; however, gentamicin-impregnated PMMA beads induce synovitis and superficial cartilage erosion. CLINICAL RELEVANCE: Temporary intra-articular administration of antibiotic-impregnated PMMA may be an effective way to treat septic joints that require constant high concentrations of antibiotics.  相似文献   

6.
OBJECTIVE: To assess gentamicin concentrations in serum and bronchial lavage fluid (BLF) of horses during a 24-hour period after once-daily aerosol administration of gentamicin (GAER) for 7 days and the pattern and degree of bronchial tree inflammation associated with repeated GAER. ANIMALS: 13 healthy adult horses (9 geldings and 4 mares). PROCEDURE: The treatment group comprised 8 horses, and 5 horses were untreated control animals. Gentamicin (20 mL of gentamicin [50 mg/mL]) was administered via aerosol once daily for 7 days. Samples of serum and BLF were obtained from all horses before GAER and 0.5, 4, 8, and 24 hours after the final day of GAER. Gentamicin concentrations were determined for all samples from treated horses, and cytologic examinations were performed on all BLF samples. RESULTS: Peak median BLF gentamicin concentration detected at 0.5 hours was 2.50 microg/mL. Median serum gentamicin concentration was < 0.50 microg/mL at all time points. Significant differences were not observed in total nucleated cell counts or differential cell counts in BLF between groups at any time point. Neutrophil count in BLF for all horses was increased over baseline at 4 and 24 hours. CONCLUSIONS AND CLINICAL RELEVANCE: We did not detect evidence of gentamicin accumulation or respiratory inflammation after once-daily GAER for 7 days. This protocol appears unlikely to result in local or systemic toxicosis. Repeated daily GAER to horses appears to be a safe procedure and may have clinical use in the treatment of horses with bacterial infections of the airways.  相似文献   

7.
Regional perfusion of carpal tissues by forced intramedullary administration of fluids was evaluated in 10 horses. Results of subtraction radiography after perfusion with a contrast medium demonstrated that perfusate was delivered to the carpal tissues by the venous system. Perfused India ink was distributed uniformly in the antebrachiocarpal and middle carpal synovial membranes. Histologically, the ink was within the venules of the synovial villi. Immediately after perfusion with gentamicin sulfate (1 g), the gentamicin concentrations in the synovial fluid and synovial membrane of the antebrachiocarpal joint were 349 +/- 240 micrograms/mL and 358 +/- 264 micrograms/g, respectively. When gentamicin concentrations in the synovial fluid of the antebrachiocarpal joint and serum were measured 0, 0.5, 1, 4, 8, 12, and 24 hours after carpal perfusion, the mean peak gentamicin concentration in the synovial fluid was 589 +/- 429 micrograms/mL. At hour 24, the mean gentamicin concentration in the synovial fluid was 4.8 +/- 2.0 micrograms/mL. The resulting peak gentamicin concentration in the serum was 23.7 +/- 14.5 micrograms/mL immediately after the perfusion; it decreased below the desired trough level of 1 micrograms/mL between hours 4 and 8.  相似文献   

8.
OBJECTIVE: To establish the route of infusion (IV or intraosseous) that results in the highest concentration of amikacin in the synovial fluid of the tibiotarsal joint and determine the duration of peak concentrations. ANIMALS: 21 horses. PROCEDURE: Regional perfusion of a limb on 15 horses was performed. Amikacin sulfate was infused into the saphenous vein or via intraosseous infusion into the distal portion of the tibia (1 g in 56 ml of lactated Ringer's solution) or proximal portion of the metatarsus (1 g of amikacin in 26 ml of lactated Ringer's solution). Amikacin concentrations were measured in sequential samples from tibiotarsal joint synovial fluid and serum. Samples were obtained immediately prior to release of the tourniquet and 0.5, 1, 4, 8, 12, and 24 hours after the tourniquet was released. Radiographic contrast material was infused into the same locations as the antibiotic perfusate to evaluate distribution in 6 other horses. RESULTS: Infusion into the saphenous vein produced the highest concentration of amikacin in the tibiotarsal joint, compared with the distal portion of the tibia (mean +/- SE, 701.8 +/- 366.8 vs 203.8 +/- 64.5 microg/ml, respectively). Use of a lower volume of diluent in the proximal portion of the metatarsus produced a peak value of 72.2 +/- 23.4 microg/ml. CONCLUSIONS AND CLINICAL RELEVANCE: For regional perfusion of the tarsus, IV infusion is preferred to intraosseous infusion, because higher concentrations are achieved in the synovial fluid, and the procedure is easier to perform.  相似文献   

9.
OBJECTIVE: To develop a method for continuous infusion of gentamicin into the tarsocrural joint of horses, to determine pharmacokinetics of gentamicin in synovial fluid of the tarsocrural joint during continuous infusion, and to evaluate effects of continuous infusion of gentamicin on characteristics of the synovial fluid. ANIMALS: 12 healthy adult horses. PROCEDURE: An infusion catheter consisting of flow control tubing connected to a balloon infuser was used. Gentamicin solution (100 mg/ml) was infused in the right tarsocrural joint and balanced electrolyte solution was infused in the left tarsocrural joint for 5 days. Synovial fluid and serum gentamicin concentrations were measured by use of a fluorescence polarization immunoassay. RESULTS: 17 of the 24 (71%) infusion catheters initially placed functioned without complications for the entire 5-day infusion period. Median gentamicin concentration in synovial fluid from treated joints during the 5-day infusion period ranged from 2875 to 982 microg/ml. Median serum gentamicin concentration during this period ranged from 2.31 to 2.59 microg/ml. Mean (+/- SD) elimination half-life and total clearance of gentamicin from the synovial fluid were 6.25+/-1.01 hours and 1.52+/-0.96 ml/min, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: An infusion catheter can be used for continuous infusion of gentamicin into the tarsocrural joints of horses for up to 5 days. At a gentamicin dosage of 0.17+/-0.02 mg/kg/h, continuous intra-articular infusion results in synovial fluid gentamicin concentrations greater than 100 times the minimal inhibitory concentration reported for common equine pathogens.  相似文献   

10.
OBJECTIVE: To evaluate clinical variables, regional concentrations, and pharmacokinetics of vancomycin in the synovial fluid of distal forelimb joints of horses after IV regional limb perfusion. ANIMALS: 6 horses. PROCEDURE: Vancomycin was administered via IV regional limb perfusion to the distal portion of the forelimbs of anesthetized horses. Drug (300 mg of vancomycin hydrochloride in 60 mL of saline [0.9% NaCl] solution) was infused into 1 forelimb, whereas the contralateral limb served as a control and was perfused with 60 mL of saline solution. Solutions were injected into the lateral digital vein after digital exsanguination. Synovial fluid from the metacarpophalangeal (MTCP) and distal interphalangeal (DIP) joints and systemic blood were collected prior to perfusion and 15, 30, 45, 65, and 90 minutes after initiation of the infusion. Synovial fluid from the MTCP joint and blood were also obtained at 4, 8, 12, and 24 hours after infusion. Plasma urea and creatinine concentrations, degree of lameness, and certain clinical variables involving the MTCP joint and infusion site were assessed for 7 days. Results were compared between the vancomycin treatment and control groups. RESULTS: No complications or significant differences in renal function, lameness, or clinical variables were observed between groups. Vancomycin concentrations exceeded 4 microg/mL in MTCP joints for approximately 20 hours. Higher concentrations were reached in DIP joints than in MTCP joints. CONCLUSIONS AND CLINICAL RELEVANCE: IV regional limb perfusion with 300 mg of vancomycin as a 0.5% solution was safe and may be useful in horses as treatment for distal limb infections.  相似文献   

11.
OBJECTIVE: To evaluate the pharmacokinetic-pharmacodynamic parameters of enrofloxacin and a low dose of amikacin administered via regional IV limb perfusion (RILP) in standing horses. ANIMALS: 14 adult horses. PROCEDURES: Standing horses (7 horses/group) received either enrofloxacin (1.5 mg/kg) or amikacin (250 mg) via RILP (involving tourniquet application) in 1 forelimb. Samples of interstitial fluid (collected via implanted capillary ultrafiltration devices) from the bone marrow (BMIF) of the third metacarpal bone and overlying subcutaneous tissues (STIF), blood, and synovial fluid of the radiocarpal joint were collected prior to (time 0) and at intervals after tourniquet release for determination of drug concentrations. For pharmacokinetic-pharmacodynamic analyses, minimum inhibitory concentrations (MICs) of 16 microg/mL (amikacin) and 0.5 microg/mL (enrofloxacin) were applied. RESULTS: After RILP with enrofloxacin, 3 horses developed vasculitis. The highest synovial fluid concentrations of enrofloxacin and amikacin were detected at time 0; median values (range) were 13.22 microg/mL (0.254 to 167.9 microg/mL) and 26.2 microg/mL (5.78 to 50.0 microg/mL), respectively. Enrofloxacin concentrations exceeded MIC for approximately 24 hours in STIF and synovial fluid and for 36 hours in BMIF. After perfusion of amikacin, concentrations greater than the MIC were not detected in any samples. Effective therapeutic concentrations of enrofloxacin were attained in all samples. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with orthopedic infections, RILP of enrofloxacin (1.5 mg/kg) should be considered as a treatment option. However, care must be taken during administration. A dose of amikacin > 250 mg is recommended to attain effective tissue concentrations via RILP in standing horses.  相似文献   

12.
Objective: To describe and discuss previously unreported complications associated with intraosseous perfusion with gentamicin in horses. Study Design: Case report. Animals: Ten‐year‐old Warmblood gelding. Methods: Intraosseous perfusion with gentamicin into the proximal phalanx (P1) was used as part of the treatment regimen for distal interphalangeal joint and navicular bursa synovial sepsis. Although the sepsis responded favorably complications developed at the perfusion site, including persistent osteomyelitis, progressive osteonecrosis, and ultimately pathologic fracture of P1. Results: The progression of the clinical signs and findings at necropsy are suggestive of a toxic osteonecrosis secondary to intraosseous perfusion. Conclusions: Further work is needed to investigate the effects of high dose gentamicin on equine mesenchymal cells that may be achieved during intraosseous perfusion. Clinical Relevance: Lower doses of perfusate within the medullary canal of P1 or alternative perfusion sites should be considered.  相似文献   

13.
OBJECTIVE: To determine synovial fluid gentamicin concentrations and evaluate adverse effects on the synovial membrane and articular cartilage of tarsocrural joints after implantation of a gentamicin-impregnated collagen sponge. ANIMALS: 6 healthy adult mares. PROCEDURES: A purified bovine type I collagen sponge impregnated with 130 mg of gentamicin was implanted in the plantarolateral pouch of 1 tarsocrural joint of each horse, with the contralateral joint used as a sham-operated control joint. Gentamicin concentrations in synovial fluid and serum were determined for 120 hours after implantation by use of a fluorescence polarization immunoassay. Synovial membrane and cartilage specimens were collected 120 hours after implantation and evaluated histologically. RESULTS: Median peak synovial fluid gentamicin concentration of 168.9 microg/mL (range, 115.6 to 332 microg/mL) was achieved 3 hours after implantation. Synovial fluid gentamicin concentrations were < 4 microg/mL by 48 hours. Major histologic differences were not observed in the synovial membrane between control joints and joints implanted with gentamicin-impregnated sponges. Safranin-O fast green stain was not reduced in cartilage specimens obtained from treated joints, compared with those from control joints. CONCLUSIONS AND CLINICAL RELEVANCE: Implantation of a gentamicin-impregnated collagen sponge in the tarsocrural joint of horses resulted in rapid release of gentamicin, with peak concentrations > 20 times the minimum inhibitory concentration reported for common pathogens that infect horses. A rapid decrease in synovial fluid gentamicin concentrations was detected. The purified bovine type I collagen sponges did not elicit substantial inflammation in the synovial membrane or cause mechanical trauma to the articular cartilage.  相似文献   

14.
OBJECTIVE: To determine whether clinically effective concentrations of methylprednisolone or triamcinolone can be achieved in the navicular bursa after injection of methylprednisolone acetate (MPA) or triamcinolone acetonide (TA) into the distal interphalangeal joint (DIPJ) and whether clinically effective concentrations of these drugs can be achieved in the DIPJ after injecting the navicular bursa with the same doses of MPA or TA. ANIMALS: 32 healthy horses. PROCEDURES: Horses in groups 1 through 4 received 40 mg of MPA in the DIPJ, 10 mg of TA in the DIPJ, 40 mg of MPA in the navicular bursa, and 10 mg of TA in the navicular bursa, respectively. Concentrations of corticosteroids that diffused into the adjacent synovial structure were determined. RESULTS: For group 1, injection of MPA into the DIPJ yielded a mean +/- SD concentration of 0.24 +/- 0.072 microg of methylprednisolone/mL in the navicular bursa. For group 2, injection of TA into the DIPJ yielded 0.124 +/- 0.075 microg of triamcinolone/mL in the navicular bursa. For group 3, injection of MPA into the navicular bursa yielded 0.05 +/- 0.012 microg of methylprednisolone/mL in the DIPJ. For group 4, injection of TA into the navicular bursa yielded 0.091 +/- 0.026 microg of triamcinolone/mL in the DIPJ. CONCLUSIONS AND CLINICAL RELEVANCE: A clinically effective concentration of methylprednisolone or triamcinolone diffused between the DIPJ and navicular bursa after intra-articular or intrabursal injection, which would justify injection of the DIPJ with MPA or TA to ameliorate inflammation of the navicular bursa.  相似文献   

15.
Gentamicin sulfate-induced nephrotoxicosis was compared in 2 groups of horses fed different rations. Four horses were fed only alfalfa hay, and 4 other horses were fed only whole oats. Seven days after initiation of the diet, all horses were given gentamicin IV (5 mg/kg of body weight) every 12 hours for 22 days. Urinary gamma-glutamyl-transferase to urinary creatinine (UGGT:UCr) ratio was calculated daily, and serum concentration of gentamicin was measured at 1 and 12 hours after drug administration. Results indicated that horses fed oats had greater renal tubular damage than did horses fed alfalfa. Mean UGGT:UCr for horses fed alfalfa was 47.1 +/- 18.8 and was 100.0 +/- 19.0 for horses fed oats (P = 0.007). The UGGT:UCr in horses fed oats was greater than 100 for a total of 54 days; horses fed alfalfa had UGGT:UCr greater than 100 for only 7 days. Two horses not given gentamicin were fed only oats and 2 were fed only alfalfa. These horses had mean UGGT:UCr of 17.6 +/- 2.2 and 30.5 +/- 3.0, respectively. Mean peak and trough concentrations of gentamicin were statistically different for horses fed oats and those fed alfalfa (peak 23.16 +/- 1.87 and 14.07 +/- 1.79 micrograms/ml, respectively [P = 0.0001], and trough, 1.81 +/- 0.69 and 0.71 +/- 0.70 micrograms/ml, respectively [P = 0.0270]). Mean half-lives of gentamicin (estimated from peak and trough concentrations) for horses fed alfalfa (2.58 +/- 0.26 hours) and horses fed oats (2.88 +/- 0.27 hours) were not significantly different. Horses fed only oats had greater degree of gentamicin-induced nephrotoxicosis than did those fed only alfalfa.  相似文献   

16.
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses.  相似文献   

17.
OBJECTIVE: To evaluate the clinical effects and pharmacokinetics of vancomycin in plasma and synovial fluid after intraosseous regional limb perfusion (IORLP) in horses and to compare results with those obtained after IV regional limb perfusion (IVRLP). ANIMALS: 6 horses. PROCEDURES: 1 forelimb of each horse received vancomycin hydrochloride (300 mg in 60 mL of saline [0.9% NaCl] solution) via IORLP; the contralateral limb received 60 mL of saline solution (control). Solutions were injected into the medullary cavity of the distal portion of the third metacarpal bone. Synovial fluid from the metacarpophalangeal (MTCP) and distal interphalangeal (DIP) joints and blood were collected prior to perfusion and 15, 30, 45, 65, and 90 minutes after beginning IORLP, and synovial fluid from the MTCP joint only and blood were collected 4, 8, 12, and 24 hours after beginning IORLP. Plasma urea and creatinine concentrations and clinical appearance of the MTCP joint region and infusion sites were determined daily for 7 days. Results were compared with those of a separate IVRLP study. RESULTS: Clinical complications were not observed after IORLP. Mean vancomycin concentration in the MTCP joint was 4 microg/mL for 24 hours after IORLP. Compared with IORLP, higher vancomycin concentrations were detected in the DIP joint after IVRLP. Compared with IVRLP, higher vancomycin concentrations were detected in the MTCP joint for a longer duration after IORLP. CONCLUSIONS AND CLINICAL RELEVANCE: IORLP with 300 mg of vancomycin in a 0.5% solution was safe and may be clinically useful in horses. Intravenous and intraosseous routes may be better indicated for infectious processes in the DIP and MTCP joints, respectively.  相似文献   

18.
OBJECTIVE: To compare isolated limb retrograde venous injection (ILRVI) and isolated limb infusion (ILI) for delivery of amikacin to the synovial fluid of the distal interphalangeal and metacarpophalangeal joints and to evaluate the efficacy of use of an Esmarch tourniquet in standing horses. ANIMALS: 6 healthy adult horses. PROCEDURES: Horses were randomly assigned in a crossover design. In ILRVI, the injection consisted of 1 g of amikacin diluted to a total volume of 60 mL administered during a 3-minute period. In ILI, the infusion consisted of 1 g of amikacin diluted to 40 mL administered during a 3-minute period followed by administration of boluses of diluent (82 mL total) to maintain vascular pressure. During ILI, the infusate and blood were circulated from the venous to the arterial circulation in 5-mL aliquots. Synovial fluid and serum samples were obtained to determine maximum amikacin concentrations and tourniquet leakage, respectively. RESULTS: Both techniques yielded synovial concentrations of amikacin > 10 times the minimum inhibitory concentration (MIC) for 90% of isolates (80 microg/mL) and > 10 times the MIC breakpoint (160 microg/mL) of amikacin-susceptible bacteria reported to cause septic arthritis in horses. These values were attained for both joints for both techniques. Esmarch tourniquets prevented detectable loss of amikacin to the systemic circulation for both techniques. CONCLUSIONS AND CLINICAL RELEVANCE: Both techniques reliably achieved synovial fluid concentrations of amikacin consistent with concentration-dependent killing for bacteria commonly encountered in horses with septic arthritis. Esmarch tourniquets were effective for both delivery techniques in standing horses.  相似文献   

19.
Gentamicin sulfate (2.2 mg/kg of body weight, IV) was given to anesthetized horses. Jejunal and large colon tissue samples (1 g), serum, and urine were collected over a 4-hour period. Maximum gentamicin concentrations in serum (10.06 +/- 2.85 micrograms/ml) occurred at 0.25 hours after injection. Maximum gentamicin concentrations in the large colon (4.13 +/- 1.80 micrograms/ml) and jejunum (2.26 +/- 1.35 micrograms/ml) occurred in horses at 0.5 and 0.33 hours, respectively. Tissue concentrations decreased in parallel with serum concentrations and were still detectable at the end of the 4-hour period. During the time that samples were collected, the total amount of gentamicin excreted in the urine ranged from 7.21 +/- 3.11 mg to 11.91 +/- 7.12 mg, with a mean urinary concentration of 57.01 +/- 5.37 micrograms/ml. Over the 4-hour collection period, the fraction of dose that was excreted unchanged in the urine was 4.8 +/- 1.9%. Pharmacokinetic analyses of the serum concentration-time data gave a serum half-life of 2.52 +/- 1.29 hours, volume of distribution of 227 +/- 83 ml/kg, and body clearance of 1.12 +/- 0.26 ml/min/kg. The half-lives of the antibiotic in the jejunum and large colon were 1.32 and 1.33 hours, respectively.  相似文献   

20.
OBJECTIVE: To evaluate the effectiveness of four methods of povidone-iodine preparation on skin bacterial flora of arthrocentesis sites, in horses, with and without evidence of skin contamination. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-four adult horses. METHODS: Horses were assigned to either the clean or contaminated group based on housing environment and visual evidence of contamination. Using a moist sterile swab, microbial culture samples were obtained from the skin over the distal interphalangeal joints immediately before and after preparation. Each site was aseptically prepared with 1 of 4 povidone-iodine techniques: 10-minutes scrub, 5-minutes scrub, three 30-second scrubs, or commercial one-step iodophor surgical solution. Colony forming units (CFUs) were determined for each sample, 24 hours after inoculation, on blood agar plates. RESULTS: Mean (+/-SD) pre-scrub CFUs/mL was significantly higher in the contaminated group (9588.33+/-1223.65) compared with the clean group (4489.00+/-3842.03) (P<.01). After preparation of the arthrocentesis sites, there were no significant differences in post-scrub CFUs/mL among the 10 minutes (mean clean, 46.00+/-64.36; mean contaminated, 28.67+/-18.04), 5 minutes (mean clean, 84.17+/-109.80; mean contaminated, 40.33+/-44.52), three 30 seconds povidone-iodine scrubs (mean clean, 95.50+/-172.29; mean contaminated, 46.67+/-56.94), or application of a commercial one-step iodophor surgical solution (mean clean, 102.17+/-161.78; mean contaminated 117.67+/-143.78); or between the clean (81.96+/-131.69) and contaminated groups (58.33+/-85.90) (P<.01). CONCLUSIONS: Preparation of the distal interphalangeal joint arthrocentesis site with each of these techniques significantly reduces the bacterial flora to a similar level for arthrocentesis in horses with and without evidence of skin contamination. Clinical Relevance- Aseptic preparation of the skin over the distal interphalangeal joint may be accomplished with any of these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号