首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jiang L  Shi F  Li B  Luo Y  Chen J  Chen J 《Tree physiology》2005,25(9):1187-1195
The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.  相似文献   

2.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

3.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

4.
Wieser G 《Tree physiology》2004,24(4):475-480
Soil respiration (R) of a 95-year-old Pinus cembra L. forest at the alpine timberline was measured continuously from October 2001 to January 2003 with an automated multiplexing gas exchange system. There was significant spatial variability in soil respiration, and R at a soil temperature of 10 degrees C (R10) decreased by about 20% m(-1) with increasing distance from the trunk. Needle litter and fine root density also decreased. The spatially averaged annual soil CO2 efflux was 35 g C m(-2) year(-1) in 2002. About 70% of the temporal variation in soil respiration could be explained by variations in soil temperature, whereas the influence of soil water potential and thus soil water content was negligible because soil water availability was supra-optimal.  相似文献   

5.
We estimated carbon allocation to belowground processes in unfertilized and fertilized red pine (Pinus resinosa Ait.) plantations in northern Wisconsin to determine how soil fertility affects belowground allocation patterns. We used soil CO(2) efflux and litterfall measurements to estimate total belowground carbon allocation (root production and root respiration) by the carbon balance method, established root-free trenched plots to examine treatment effects on microbial respiration, estimated fine root production by sequential coring, and developed allometric equations to estimate coarse root production. Fine root production ranged from 150 to 284 g m(-2) year(-1) and was significantly lower for fertilized plots than for unfertilized plots. Coarse root production ranged from 60 to 90 g m(-2) year(-1) and was significantly lower for fertilized plots than for unfertilized plots. Annual soil CO(2) fluxes ranged from 331 to 541 g C m(-2) year(-1) and were significantly lower for fertilized plots than for unfertilized plots. Annual foliage litterfall ranged from 110 to 187 g C m(-2) year(-1) and was significantly greater for fertilized plots than for unfertilized plots. Total belowground carbon allocation ranged from 188 to 395 g C m(-2) year(-1) and was significantly lower for fertilized than for unfertilized plots. Annual soil CO(2) flux was lower for trenched plots than for untrenched plots but did not differ between fertilized and unfertilized trenched plots. Collectively, these independent estimates suggest that fertilization decreased the relative allocation of carbon belowground.  相似文献   

6.
We studied whole-tree C allocation with special emphasis on the quantification of C allocation to roots and root respiration. To document seasonal patterns of C allocation, 2-year-old hybrid poplar trees greater than 3 m tall were labeled with (14)CO(2) in a large Plexiglas chamber in the field, in July and September. Climate and CO(2) concentration were controlled to track ambient conditions during labeling. Individual tree canopy CO(2) assimilation averaged 3.8 micromol CO(2) m(-2) s(-1) (12.9 g C day(-1) tree(-1)) in July and 6.2 micromol CO(2) m(-2) s(-1) (9.8 g C day(-1) tree(-1)) in September. Aboveground dark respiration was 12% of net daytime C fixation in July and 15% in September. Specific activity of root-soil respiration peaked 2 days after labeling and stabilized to less than 5% of maximum 2 weeks later. Low specific activity of root-soil respiration and a labeled pool of root C demonstrated that current photosynthate was the primary source of C for root growth and maintenance during the growing season. Root respiration averaged 20% of total soil respiration in both July and September based on the proportion of labeled C respired to labeled C fixed. In July, 80% of the recovered (14)C was found above ground and closely resembled the weight distribution of the growing shoot. By September, 51% of the recovered (14)C was in the root system and closely resembled the weight distribution of different size classes of roots. The finding that the distribution of biomass and (14)C were similar verified that the C introduced during labeling followed normal seasonal translocation pathways. Results are compared to smaller scale labeling studies and the suitability of the approach for studying long-term C fluxes is discussed.  相似文献   

7.
Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.  相似文献   

8.
Klopatek JM 《Tree physiology》2002,22(2-3):197-204
Forest floor material and soil organic matter may act as both a source and a sink in global CO2 cycles. Thus, the ecosystem processes controlling these pools are central to understanding the transfers of carbon (C) between the atmosphere and terrestrial systems. To examine these ecosystem processes, the effect of stand age on temporal carbon source-sink relationships was examined in 20-year-old, 40-year-old and old-growth stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in the Cascade Mountains of south-central Washington State. Belowground C and nitrogen (N) storage and soil respiration were measured. In addition, nylon mesh bags containing homogenized soils from each site were buried at the respective sites to quantify root ingrowth and potential C sequestration and loss. The sites supporting the 20- and 40-year-old stands had soil C stores reflecting the C contributions from logging residue, coarse woody debris and stumps left after harvest. Because the N-fixer red alder (Alnus rubra Bong.) comprised 33% of the 40-year-old stand, this site had significantly greater concentrations and pools of N in the forest floor than sites without red alder. This N-rich site had consistently lower soil CO2 efflux rates during the growing season than the sites supporting the 20-year-old and old-growth stands. Estimated annual soil C efflux was 1367, 883 and 1194 g m-2 for the sites supporting the 20-, 40- and old-growth stands, respectively. These values are higher than previously reported values. Root ingrowth was significantly less in the 40-year-old stand than in the 20-year-old stand, and both young stands showed markedly less fine root growth than the old-growth stand. At the sites supporting the young stands, C and N were lost from the soil bags, whereas there was an increase in C and N in the soil bags at the site supporting the old-growth stand. The fine root growth and soil respiration data support the hypothesis that belowground C allocation decreases with increasing fertility. Quantification of the source-sink relationship of soil C at the three stands based on litterfall, relative root ingrowth and soil respiration measurements was compromised because of significant CO2 flux from decaying organic matter in the young stands.  相似文献   

9.
We measured respiration of 20-year-old Pinus radiata D. Don trees growing in control (C), irrigated (I), and irrigated + fertilized (IL) stands in the Biology of Forest Growth experimental plantation near Canberra, Australia. Respiration was measured on fully expanded foliage, live branches, boles, and fine and coarse roots to determine the relationship between CO(2) efflux, tissue temperature, and biomass or nitrogen (N) content of individual tissues. Efflux of CO(2) from foliage (dark respiration at night) and fine roots was linearly related to biomass and N content, but N was a better predictor of CO(2) efflux than biomass. Respiration (assumed to be maintenance) per unit N at 15 degrees C and a CO(2) concentration of 400 micro mol mol(-1) was 1.71 micro mol s(-1) mol(-1) N for foliage and 11.2 micro mol s(-1) mol(-1) N for fine roots. Efflux of CO(2) from stems, coarse roots and branches was linearly related to sapwood volume (stems) or total volume (branches + coarse roots) and growth, with rates for maintenance respiration at 15 degrees C ranging from 18 to 104 micro mol m(-3) s(-1). Among woody components, branches in the upper canopy and small diameter coarse roots had the highest respiration rates. Stem maintenance respiration per unit sapwood volume did not differ among treatments. Annual C flux was estimated by summing (1) dry matter production and respiration of aboveground components, (2) annual soil CO(2) efflux minus aboveground litterfall, and (3) the annual increment in coarse root biomass. Annual C flux was 24.4, 25.3 and 34.4 Mg ha(-1) year(-1) for the C, I and IL treatments, respectively. Total belowground C allocation, estimated as the sum of (2) and (3) above, was equal to the sum of root respiration and estimated root production in the IL treatment, whereas in the nutrient-limited C and I treatments, total belowground C allocation was greater than the sum of root respiration and estimated root production, suggesting higher fine root turnover or increased allocation to mycorrhizae and root exudation. Carbon use efficiency, the ratio of net primary production to assimilation, was similar among treatments for aboveground tissues (0.43-0.50). Therefore, the proportion of assimilation used for construction and maintenance respiration on an annual basis was also similar among treatments.  相似文献   

10.
The specific rate of CO(2) efflux (respiration) from roots of intact fruiting calamodin plants (Citrus madurensis Lour.) showed no diel trend, and did not respond significantly to short-term (2 day) changes in shoot irradiance. Mean root respiration rate was about 8.4 nmol CO(2) g(-1) s(-1) at 20 degrees C, and increased with temperature with a Q(10) of about 2. In calamodin plants, the proportion of total root length that was white averaged 6.0 mm m(-1). Respiration of roots of apple plants (Malus domestica Borkh.), planted in spring as rootstocks and grown at high irradiance and N supply, declined from about 5.3 to 2.8 nmol CO(2) g(-1) s(-1) between 46 and 138 days after bud burst. At 50% irradiance, root respiration was reduced more than 25% at 46 and 92 days after bud burst, but was not significantly affected later in the season. Reducing shoot irradiance reduced the proportion of total root length that was white, e.g., from 217 to 146 mm m(-1) at 46 days after bud burst. For plants previously grown at low irradiance, increasing shoot irradiance for 6 days increased the rate of root respiration by 5 to 10%. For plants previously grown at high irradiance, reducing shoot irradiance for 6 days reduced root respiration by about 20% early in the season, but had no significant effect later in the season. For plants grown with low-N supply (5% of the high-N), root respiration was reduced early in the season, but was not significantly affected later. Reducing the N supply increased slightly the proportion of total root length that was white. For plants previously grown with low-N, increasing the N supply for 6 days reduced further the rate of root respiration. For plants previously grown with high-N, reducing the N supply for 6 days did not significantly affect the rate of root respiration. Specific respiration rates of root systems excised from mature trees growing outdoors peaked in June, at about 2.4 nmol CO(2) g(-1) s(-1), and then declined for the remainder of the growing season.  相似文献   

11.
Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation.  相似文献   

12.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

13.
Reducing the canopy cover (e.g., forest thinning) is one of the most commonly employed forest silvicultural treatments. Trees are partially removed from a forest in order to manage tree competition, thus favoring the remaining and often the most valuable trees. The properties of the soil are affected by forest thinning as a result of changes in key microclimatic conditions, microbial communities and biomass, root density, nutrient budgets and organic matter turnover. The aim of this study was to determine the soil microbial biomass C, N and respiration (basal respiration) in a black pine (Pinus nigra Arn. subsp. pallasiana) forest in the Mudurnu district of Bolu Province (Western Black Sea Region, Turkey). Whereas forest thinning was found to cause increases in the soil temperature, microbial biomass C and N and organic C, it was found to decrease the soil moisture, basal respiration and metabolic quotient (qCO2). As expected, soil organic C exhibited a strong impact on soil microbial biomass C, N and basal respiration. It was concluded that the influence of forest thinning on the microbial biomass and soil respiration was the combined result of changing microclimatic conditions and soil properties, such as forest litter, soil temperature, soil moisture, soil pH and soil organic matter.  相似文献   

14.
祁连山土壤呼吸的时空变异及其与影响因子的关系   总被引:1,自引:0,他引:1  
采用美国Li—cor公司生产的L16400-09土壤呼吸室连接到L16400便携式光合作用测量系统,对祁连山不同植被类型土壤呼吸速率进行了连续1年在生长季的野外测定,并通过多元回归手段对其影响因子进行了分析。结果表明:1)2003年生长季祁连山不同植被类型土壤呼吸速率的季节动态均为一单峰曲线,最大值出现在7月份;2)不同植被类型之间的土壤呼吸及其影响因子都存有一定程度的空间变异,且随着季节的变化,表现出一定规律性;其变异系数分别为:土壤呼吸速率在21.4%-72.18%之间,温度在12.00%-38.67%之间,土壤水分在32.17%.201.34%之间,地上生物量在72%左右;3)CO2释放速率、气温、土壤含水量和生物量之间的关系分析表明约有81%的土壤呼吸量变化是由气温、土壤水分和生物量共同决定的。  相似文献   

15.
The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with (13)CO(2) and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth and soil CO(2) efflux rate (CER) were assessed for each tree over a 3-week period. The progression of the (13)C label was concurrently tracked from the atmosphere through foliage, phloem, roots and surface soil CO(2) efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Soil CER was strongly correlated with sap flow on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the HS treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CER, which was overwhelmingly driven by soil temperature and moisture. The (13)C label was immediately detected in foliage on label day (half-life = 0.5 day), progressed through phloem by Day 2 (half-life = 4.7 days), roots by Days 2-4, and subsequently was evident as respiratory release from soil which peaked between Days 3 and 6. The δ(13)C of soil CO(2) efflux was strongly correlated with phloem δ(13)C on the previous day, or 2 days earlier. While the (13)C label was readily tracked through the ecosystem, the fate of root C through respiratory, mycorrhizal or exudative release pathways was not assessed. These data detail the timing and relative magnitude of C flux through various components of a young pine stand in relation to environmental conditions.  相似文献   

16.
A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-l pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21 degrees C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration.  相似文献   

17.
Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.  相似文献   

18.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

19.
Søe AR  Buchmann N 《Tree physiology》2005,25(11):1427-1436
Soil CO2 efflux (soil respiration) plays a crucial role in the global carbon cycle and efflux rates may be strongly altered by climate change. We investigated the spatial patterns of soil respiration rates in 144 measurement locations in a 0.5-ha plot and the temporal patterns along a 300-m transect in the 0.5-ha plot. Measurements were made in an unmanaged, highly heterogeneous beech forest during 2000 and 2001. We investigated the effects of soil, roots and forest stand structure on soil respiration, and we also assessed the stability of these spatial patterns over time. Soil temperature alone explained between 68 and 95% of the temporal variation in soil respiration; however, pronounced spatial scatter of respiration rates was not explained by soil temperature. The observed spatial patterns stayed remarkably stable throughout the growing season and over 2 years. The most important structural parameter of the stand was the mean diameter at breast height of trees within a distance of 4 m of the measurement locations (m-dbh4), which explained 10-19% of the variation in soil respiration throughout the growing season. Among the soil chemical parameters, carbon content (bulk as well as dissolved) and magnesium content explained 62% of the spatial variation in soil respiration. The final best model combining soil, root and stand structural parameters (fine root biomass, soil carbon content, m-dbh4 and soil water content) explained 79% of the variation in soil respiration, illustrating the importance of both biotic and abiotic factors.  相似文献   

20.
Accurate estimates of root respiration are crucial to predicting belowground C cycling in forest ecosystems. Inhibition of respiration has been reported as a short-term response of plant tissue to elevated measurement [CO(2)]. We sought to determine if measurement [CO(2)] affected root respiration in samples from mature sugar maple (Acer saccharum Marsh.) forests and to assess possible errors associated with root respiration measurements made at [CO(2)]s lower than that typical of the soil atmosphere. Root respiration was measured as both CO(2) production and O(2) consumption on excised fine roots ( 20,000 micro l l(-1). Root respiration was significantly affected by the [CO(2)] at which measurements were made for both CO(2) production and O(2) consumption. Root respiration was most sensitive to [CO(2)] near and below normal soil concentrations (< 1500 micro l l(-1)). Respiration rates changed little at [CO(2)]s above 3000 micro l l(-1) and were essentially constant above 6000 micro l l(-1) CO(2). These findings call into question estimates of root respiration made at or near atmospheric [CO(2)], suggesting that they overestimate actual rates in the soil. Our results indicate that sugar maple root respiration at atmospheric [CO(2)] (350 micro l l(-1)) is about 139% of that at soil [CO(2)]. Although the causal mechanism remains unknown, the increase in root respiration at low measurement [CO(2)] is significant and should be accounted for when estimating or modeling root respiration. Until the direct effect of [CO(2)] on root respiration is fully understood, we recommend making measurements at a [CO(2)] representative of, or higher than, soil [CO(2)]. In all cases, the [CO(2)] at which measurements are made and the [CO(2)] typical of the soil atmosphere should be reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号