首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contributions of different acidifying processes to the total protonload (TPL) of the soil in control plots (C) and ammonium sulphate treatedplots (NS) were studied in a Norway spruce stand in Southwest Sweden during 1988–1998. The annual deposition of inorganic nitrogen and sulphate was on average 18 kg N and 20 kg S ha-1. In addition the NS treated plots received 100 kg N and 114 kg S ha-1 annually. The amounts of nutrients added to the ecosystem by wet and dry deposition and the leaching at 50 cm depth were calculated. The net atmosphericproton load, the proton load by nitrogen transformations in the soil, the sulphate sorption/desorption in the soil and the excess base cation accumulation in biomass were calculated. There was no leaching of inorganic nitrogen from control plots during the study period. The net atmospheric proton deposition, originating from sulphuric and nitric acid deposition, was the main contributor to TPL in control plots. The addition of ammonium sulphate increased the leaching of ammonium, nitrate, sulphate, magnesium and calcium but not of potassium. The TPL in NS plots was about ten times that in control plots. The nitrogen transformation processes were the main contributors to TPL to NS soil, in the beginning by ammonium uptake and later also by nitrification. The pH decreased by 0.4 units in the mineral soil. The between-year variation in TPL during the eleven year period in C plots (200–1500 molc ha-1 yr-1) and in NS plots (1000–13000 molc ha-1 yr-1) was mainly dependent on the sorption or release of sulphate. Both in C and NS, the TPL was buffered mainly by dissolving solid aluminium compounds, most probably some Al(OH)3 phase.  相似文献   

2.
Carbon sequestration in 30 yr old Norway spruce in south Sweden following manipulation of nutrient and water availability is presented. The site has an annual precipitation of 1100 mm and a deposition of about 20 kg N and 25 kg S per ha?1 yr?1. The soil type is a poorly developed podzol. Treatment include irrigation; artificial drought; ammonium sulphate addition; nitrogen-free-fertilization and irrigation with liquid fertilizers including a complete set of nutrients. The experiment has a randomized block design with four replicates per treatment. A comprehensive investigation of the above ground C storage on an areal basis was made at the start of the experiment and after 3 yr of treatment. After 3 yr of treatment with simulated N-S deposition using ammonium sulphate (100 kg N, 114 kg S ha?1 yr?1), C accumulation rates in the above ground compartments had increased by 37%. Similarly, irrigation caused increased C accumulation rates by 25%, whereas simulated drought during the vegetation period during 2 yr followed by 1 yr of recovery caused a 15% reduction of the C accumulation rates. Irrigation combined with liquid fertilization (100 kg N ha?1 yr?1), including all important nutrient elements, led to 65% increase in C accumulation rates compared to the control. The C sequestration of the latter treatment gradually increased and, during yr 5 of treatment, 8.6 Mg C ha?1 accumulated in stems and branches, compared to 3.6 Mg ha?1 for the control. It is concluded that there is a strong interaction between N-deposition and C accumulation rates in Norway spruce in south Sweden. The C accumulation rates are also sensitive to water availability. The study indicates a great potential to cultivate Norway spruce in south Sweden as a renewable energy source. A shift in energy source from fossil fuels to renewable energy sources will directly reduce the net emissions of CO2 to the atmosphere.  相似文献   

3.
The response of forest-floor mosses to deposition of nitrogen (N) and sulphur (S) was examined in field conditions in a 60-year-old Norway spruce (Picea abies Karst.) stand in southern Finland. The experimental plots received nitrogen (25 kg N ha–1) and sulphur (30 kg S ha–1) as ammonium sulphate once a year for 4 years.The dominant moss species on the site were Pleurozium schreberi (Mitt.) and Dicranum polysetum (Sw.). The biomass of the dominant moss species was decreased significantly by N and S deposition during the study period. Due to the addition of N and S, the biomass of Pleurozium schreberi was decreased by 60% and the biomass of Dicranum polysetum by 78%.  相似文献   

4.
In this paper we try to interpret results from different investigations where an ecosystem with Norway spruce was manipulated with increased N and S deposition via the soil system. The site, in Skogaby in Southwest Sweden, had 1989–93 an annual deposition of 9 kg NH4-N; 7 kg NO3-N and 20 kg SO4-S ha–1. The stand was treated during 6 years with 100 kg N and 114 kg S ha y–1 in the form of ammonium sulphate (NS treatment). The stand reacted with increased above ground production of 31% after 3 years of treatment. The uptake above ground of N was 155 kg ha–1 higher than in the control. Those trends were even stronger after 6 years of treatment. There were no decreases in the uptake of P, K, Ca or Mg (but for B) after 3 or 6 years of NS-treatment. Needle macro nutrient concentrations in relation to N decreased for several nutrients due to dilution effects. As result of the NS treatment pH increased markedly in the litter layer, and less, but significantly, in the humus layer. A decrease in pH value by about 0.3 units was found in the rest of the soil profile down to 50 cm. Dry mass of needle litter fall and litter layer both increased as a result of 6 years of NS-treatment. After three years of treatment 77–80% of all living fine roots in both control and NS treatment were found in the humus layer and the upper 10 cm of the mineral soil. The amount of living fine roots in the humus layer of NS-treated trees decreased to about one third of the control, and the amount of dead fine roots increased by 150% compared with untreated trees after 6 years of treatment. It is argued that the decreased amount of living and increased amount of dead fine roots not necessarily are indications of decreased root vitality. It can also be explained by increased root turnover rate and decreased decomposition rates of N rich new and old fine root litter. No inorganic N was leached from the control plots whereas the NS treated plots started to leach NO3 the second year of treatment. During 1989–1993 a total of 44 kg NO3-N and 30 kg NH4-N per ha was lost from the system which means that 88% of the N supplied was retained by the ecosystem. At first SO4 was adsorbed in the soil, but after five years of treatment the output was almost equal to the input.  相似文献   

5.
The effects of enhanced (NH4)2SO4 (NS) deposition on Norway spruce (Picea abies [L.] Karst) fine root biomass, vitality and chemistry were investigated using root-free in-growth cores reproducing native organic and mineral soil horizons. The cores were covered and watered every 2 weeks with native throughfall or throughfall supplemented with NS to increase deposition by 75 kg ha-1 a-1 NH4 +-N (86 kg ha-1 a-1 SO42--S). The in-growth cores were sampled after 19 months and assessed for root biomass, necromass, length, tip number, tip vitality and fine root chemistry. Root biomass and fine root aluminium (Al) concentration were negatively correlated, but NS deposition had no effect on root growth or root tip vitality. NS deposition caused increased fine root nitrogen (N) concentrations in the organic horizon and increased Calcium (Ca) concentrations in the mineral horizon. Fine root biomass was higher in the organic horizon, where fine root Al and potassium (K) concentrations were lower and Ca concentrations higher than in the mineral horizon. Results highlighted the importance of soil stratification on fine root growth and chemical composition.  相似文献   

6.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

7.
Turnover and fluxes of C and N through microbial biomass were investigated on a research site in the grassland region of southwestern Germany. For a period of twelve months, biomass C was determined every 2 weeks and biomass N every 4 weeks (Fumigation-Extraction). This was done at fertilized plots as well as on plots, which had not been fertilized for eight years. Biomass C and N accounted for 1.5–7.5% of the soil C and 2–9% of the soil nitrogen. Unfertilized plots contained more biomass C and N than fertilized plots. No seasonal influence on the amount of the microbial biomass was visible. C/N ratios were not related to fertilization events. An increase of the C/N ratio with depth suggests a dominance of fungi in the subsurface horizons. Estimates of biomass C and N turnover were calculated by dividing the total measured losses of biomass by the average quantity of biomass present (McGill et al., 1986), annual fluxes of carbon and nitrogen were calculated by dividing annual mean C(N) by the average C(N) in biomass (Jenkinson and Ladd, 1981). Average turnover rates for biomass C varied between 1.4 and 4.5 a?1, turnover rates for nitrogen were slower (1.2–3.3 a?1). Carbon Ruxes through the microbial biomass range from 5000 to 8000 kg ha?1 a?1, while nitrogen fluxes range from 400 to 700 kg ha?1 a?1.  相似文献   

8.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

9.
Dissolved organic matter (DOM) dynamics in spruce forested sites - examinations by analytical DOM fractionation Dissolved organic matter from two spruce forested sites in the Fichtelgebirge (Germany) was divided into different chemical and functional fractions, and the budgets of the fractions obtained were calculated. For both sites hydrophobic acids (HoS), hydrophilic acids (HiS), hydrophobic neutrals (HoN), hydrophilic neutrals (HiN), and hydrophilic bases (HiB) are discriminated concerning their dynamics in the compartments. Most of the HiN and HoN are mobilized by leaching from the forest canopy. Both neutral fractions are netto retained in the forest floor as well as in the mineral soil. In contrast, HoS and HiS are mainly released in the organic layers with a total input of organic acids from the forest floor into the mineral soil of ca 100 kg C (HoS) ha?1 a?1, and 50 kg C (HiS) ha?1 a?1, respectively. HoS are selectively better retained in the mineral horizons, leading to a mineral soil output of 2.4 – 4.4 kg C (HoS) ha?1 a?1, and 2.7 – 6.5 kg C (HiS) ha?1 a?1, respectively. It is concluded that the different mobility of the DOM fractions has implications for the mobilization and transport of organic pollutants and heavy metals.  相似文献   

10.
Microbial abundance and activity were examined in soil and litter under Kentucky bluegrass turf that received four annual applications of 39.2 kg ha?1 of bandane (polychlorodicyclopentadiene) or 439 kg ha?1 of calcium arsenate. No consistent effect of either herbicide on bacterial numbers was observed and fungal numbers were unaffected compared to control plots that received no herbicide. Amylase and invertase activities were significantly higher in undecomposed residues from treated plots. The rates of glucose utilization, nitrification of ammonium, and amylase synthesis were significantly lower in soil underlying treated turf than in control soil. The amount of undecomposed plant material was greatest in arsenate-treated plots in which microbial activity was most severely affected, suggesting that the increased residue accumulation was the direct consequence of a reduction in soil microbial activity.  相似文献   

11.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

12.
FORECAST, an ecosystem simulation model, was calibrated for aspen (Populus tremuloides Michx) and white spruce (Picea glauca (Moench) Voss) stands using data collected in the Boreal White and Black Spruce biogeoclimatic zone in northeastern British Columbia and published data. Simulations were undertaken to examine the effects of initial density of aspen on yield of white spruce in an aspen and spruce mixedwood stand, and to compare the predicted stemwood biomass yields of aspen, white spruce and mixedwood stands. Results of the simulations suggest that mixedwood management regimes on the same medium quality site should have higher stemwood yield compared to pure white spruce stand. Simulated stemwood biomass yield of pure aspen stands over 240 years on medium site varied from 682.5 Mg ha?1 to 239.1 Mg ha?1 for different rotation lengths (30 to 120 years). Repeated rotations of monoculture white spruce produced much less stemwood biomass, simulated yields over 240 years ranging from 877.3 Mg ha?1to 248.4 Mg ha?1 for rotation lengths of 60 to 240 years. Simulated aspen and white spruce mixedwood stands produced higher stemwood biomass yields than the pure white spruce stands, but less than the pure aspen stands; from 217.4 Mg ha?1 to 292.8 Mg ha?1 over 240 years. Variations in initial densities of aspen did not affect spruce stemwood biomass yield over the simulation period. This model shows potential for comparing the relative effects of different management strategies on harvestable volume and variety of other ecosystem variables. A calibrated version of the model should be useful as both a management simulator and a research tool. However, shortcomings in the representation of the canopy architecture of mixed species stands suggested the need to develop an individual tree version of this ecosystem management model for application to mixed species stands.  相似文献   

13.
《Journal of plant nutrition》2013,36(8):1561-1580
Abstract

The Magruder plots are the oldest continuous soil fertility wheat research plots in the Great Plains region, and are one of the oldest continuous soil fertility wheat plots in the world. They were initiated in 1892 by Alexander C. Magruder who was interested in the productivity of native prairie soils when sown continuously to winter wheat. This study reports on a simple estimate of nitrogen (N) balance in the Magruder plots, accounting for N applied, N removed in the grain, plant N loss, denitrification, non‐symbiotic N fixation, nitrate (NO3 ?) leaching, N applied in the rainfall, estimated total soil N (0–30 cm) at the beginning of the experiment and that measured in 2001. In the Manure plots, total soil N decreased from 6890 kg N ha?1 in the surface 0–30 cm in 1892, to 3198 kg N ha?1 in 2002. In the Check plots (no nutrients applied for 109 years) only 2411 kg N ha?1 or 35% of the original total soil organic N remains. Nitrogen removed in the grain averaged 38.4 kg N ha?1 yr?1 and N additions (manure, N in rainfall, N via symbiotic N fixation) averaged 44.5 kg N ha?1 yr?1 in the Manure plots. Following 109 years, unaccounted N ranged from 229 to 1395 kg N ha?1. On a by year basis, this would translate into 2–13 kg N ha?1 yr?1 that were unaccounted for, increasing with increased N application. For the Manure plots, the estimate of nitrogen use efficiency (NUE) (N removed in the grain, minus N removed in the grain of the Check plots, divided by the rate of N applied) was 32.8%, similar to the 33% NUE for world cereal production reported in 1999.  相似文献   

14.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

15.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

16.
Abstract

Salinity is a negative abiotic stress that produces drastic disorders on soils and plants causing a critical reduction in plant growth and yield parameters, particularly maize plant, which considers a moderately sensitive plant to soil and water salinity. Although proline and nitrogen are well known to protect plants and improve their tolerance against various abiotic stresses including salinity, the interaction between proline and nitrogen fertilizer under saline conditions remained unclear. Two field experiments were conducted, on a clay saline soil in a split-plot design with four replicates. The main plots were arranged to study the effect of exogenous of proline applications at 0, 50 and 100?mM during seedling and vegetative stages, and mineral of nitrogen fertilization rates were 0, 140, 280, and 420?kg N ha?1 occupied the subplots. A significant response to fertilizer N was observed at 420?kg ha?1, while the optimum N rate of 50?mM of proline was 410.3?kg ha?1 and the economic optimum dose was 403.43?kg ha?1. Therefore, we recommend using 403.43?kg N ha?1 to get an optimum economic yield of maize, especially in saline soil, when used 50?mM exogenous of proline at seedling and vegetative stages.  相似文献   

17.
Rhizophere and bulk soil chemistry were investigated in a Norway spruce stand in SW Sweden. The rhizosphere and bulk soil chemistry in water extracts in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatment regime was started in 1988. Cylindrical core samples of the LFH-layer and mineral soil layers were collected in 1992 and used for water extract analyses. Samples of soil from LFH-layer and mineral soil layers were taken in 1991 and 1993 for determination of CEC and base saturation. Soil pH and NH4-N, NO3-N and SO4-S, Al, Ca, K and Mg concentrations in water extracts were measured for rhizosphere and bulk soils. The pH-values of bulk and rhizosphere soils in NS plots decreased compared with those in control plots, whereas concentrations of NH4-N, NO3-N, SO4-S, base cations and Al in water extract increased. In both bulk and rhizosphere soils the concentration of NH4-N was much higher than that of NO3-N. A significant difference in the pH and Mg concentration of bulk and rhizosphere soil between the treated and control plots was found only in the 0–10 cm layer. For all layers, there was a significant difference in NH4-N concentrations in the bulk and rhizosphere soil between the NS treatment and control plots. Concentrations of exchangeable base cations and the base saturation level in the LFH-layer decreased in the NS plots. The concentration of extractable SO4-S increased in the NS plots. The NS treatment enhanced the amount of litter in L-layer, owing to increases in needle biomass and litterfall but led to losses of base cations, mainly K and Mg, from LFH-layer. It was concluded that the NS treatment displaced cations from exchangeable sites in the LFH-layer leading to higher concentrations of these elements in both rhizosphere and bulk soil.  相似文献   

18.
Fate of fertilizer nitrogen.   总被引:3,自引:0,他引:3  
Results are presented from a three year lysimeter investigation, employing single (15NH4NO3) and double (15NH415NO3) labelled ammonium nitrate to study the uptake of soil and fertilizer nitrogen by cut ryegrass at 250, 500 and 900 kg N ha?1 a?1. Average annual recoveries of nitrogen were equivalent to 99,76 and 50% of the nitrogen added at 250, 500 and 900 kg N ha?1, respectively. At 250 kg N ha?1 the difference between the overall nitrogen recovery and the fertilizer recovery was almost entirely attributable to pool substitution resulting from mineralization/immobilization turnover (MIT). At 900 kg N ha?1 both the low overall recovery of nitrogen and the low fertilizer recovery reflected the large excess of available nitrogen over crop requirements. No evidence of ‘priming’ was obtained. Analysis of the results from single and double labelled lysimeters using simultaneous equations indicated that at 250 kg N ha?1,~70% of the nitrogen in the crop was derived from the ammonium pool. At 500 kg N ha?1 this dropped to 64%, while at 900 kg N ha?1 the figure was 59%. There was a suggestion that at the lower application rates, preferential uptake of ammonium was occurring but that as N supply exceeded crop requirements, nitrate was the major N source. Despite the preferential exploitation of the ammonium pool, at 250 and 500 kg N ha?1 pool substitution resulting from MIT resulted in lower recoveries of fertilizer ammonium compared with fertilizer nitrate.  相似文献   

19.
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha?1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha?1enabled greater production of sugarcane stalks (140 t ha?1).  相似文献   

20.
Abstract

A study was conducted in the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, to transform the normal compost into bioactive compost, which has multiple benefits to the crop system. The key players in this transformation process were Azotobacter sp., Pseudomonas sp., Phosphobacteria sp. and the waste materials like poultry litter and spent wash. This enrichment process increases both the quality and nutrient content of the municipal solid waste compost significantly. A study was carried out to evaluate the effect of application of different levels of enriched municipal solid waste compost on the availability of the macronutrient content to the rice field soil. The effect of enriched compost on soil available nutrients was significant. The soil ammonium nitrogen and soil nitrate nitrogen content was found to be high in the plots where the enriched compost was applied along with inorganic fertilizer with the values of 38.87 mg kg?1 and 32.87 mg kg?1, respectively. In addition, the availability decreased towards crop growth. The soil available P and K were also increased with enriched compost application to about 22.46 kg ha?1 and 647 kg ha?1 compared with control values of 19.44 kg ha?1 and 518 kg ha?1, respectively. Both phosphorus and potassium content decreased towards advancement of crop growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号