首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

2.
Yearling yellow perch were collected from sixteen Muskoka-Haliburton lakes to determine interrelationships between water quality, Hg residues in fish and fish condition. The lakes studied were Precambrian shield lakes with a pH range of 5.6 to 7.3 and total inflection point alkalinities of 0.4 to 16.0 mg L?1. Mercury residues in yellow perch ranged from 31 to 233 ng g?1 and were inversely correlated (p < 0.001; r = 0.84) with lakewater pH. Stepwise linear regression analyses selected lakewater pH as the only significant parameter associated with Hg accumulations. Alkalinities, sulphate, Ca and dissolved organic carbon (DOC) were not selected as significant. Likewise, lakewater pH and Hg residues in yellow perch were inversely (p < 0.001) correlated with fish condition. Lakewater pH, accounted for 74% and Hg in fish a further 11% of the variability in fish condition. Terrestrial drainage size/lake volume ratios were also correlated (p < 0.05; r = 0.78) with Hg accumulations in perch from a subset of nine headwater lakes. No temporal trends in Hg residues were evident in yellow perch over a 9 yr interval (1978–1987).  相似文献   

3.
4.
Acid deposition has led to acidification and loss of fish populations in thousands of lakes and streams in Norway. Since the peak in the late 1970s, acid deposition has been greatly reduced and acidified surface waters have shown chemical recovery. Biological recovery, in particular fish populations, however, has lagged behind. Long-term monitoring of water chemistry and fish populations in Lake Langtjern, south-eastern Norway, shows that around 2008, chemical recovery had progressed to the point at which natural reproduction of brown trout (Salmo trutta) reoccurred. The stocked brown trout reproduced in the period 2008–2014, probably for the first time since the 1960s, but reproduction and/or early life stage survival was very low. The results indicate that chemical thresholds for reproduction in this lake are approximately pH?=?5.1, Ali?=?26 μg l?1, ANC?=?47 μeq l?1, and ANCoaa?=?10 μeq l?1 as annual mean values. These thresholds agree largely with the few other cases of documented recovery of brown trout in sites in Norway, Sweden, and the UK. Occurrence and duration of acidic episodes have decreased considerably since the 1980s but still occur and probably limit reproduction success.  相似文献   

5.
High immediate postspawning mortality due to inferior autumn water quality has been hypothesized to cause juvenilization in some brown trout populations in acidified areas. We exposed male and female spawners and female postspawners from a juvenile-dominated brown trout population to acidic streamwater (pH = 4.83, Ali = 240 μg L?1) and a limed control (pH = 5.70, Ali = 55 μg L?1) for 28 days in November and December, 1984. Water chemistry was monitored at least bi-daily, and physiological stress was assessed by analysis of plasma chloride, osmolality and haematocrit. Neither pronounced physiological stress nor mortality was observed at the control site. At the exposure site trout showed significant but moderate stress responses and 15 % died. The results are discussed in terms of potential population effects and physiological mechanisms, e.g., plasma volume reduction.  相似文献   

6.
Nelson Lake, a moderately acidic (pH 5.7), metal-contaminated (Cu 22 μg L?1; Zn 18 ug L?1) lake, 28 km from the smelters at Sudbury, had a degraded fish community in the early 1970's, with lake trout (Salvelinus namaycush) scarce, smallmouth bass (Micropterus dolomieui) extinct, and the littoral zone dominated by the acid-tolerant yellow perch (Perca flavescens). Liming of the lake in 1975–76 increased pH to 6.4, and decreased metal concentrations. Chemical conditions have remained relatively stable in the 10 yr following base addition. Initially, it appeared that neutralization produced dramatic changes in the resident fish community. Yellow perch abundance declined rapidly after neutralization, lake trout abundance increased to the extent that 3.26 kg ha?1 were caught in the winter of 1980, and reintroduced smallmouth bass reproduced and established a large population. However, these changes in the fish community can not be directly attributed to liming, as water quality and the sport fisheries of an unlimed nearby lake also improved. Reduced emissions from Sudbury smelters were responsible for improvements in the untreated lake. Recovery of the lake trout population in Nelson Lake appears to have begun prior to liming. Of the lake trout sampled during the 1980 winter fishery, 65.8% were present prior to the chemical treatment. Predation by lake trout was the likely cause of the perch decline. Our results suggest that chemical conditions producing population level responses in fish have abrupt thresholds and that neutralization of lakes above these thresholds may not produce distinguishable effects.  相似文献   

7.
In 1986 Lake Langedalstjenn in southern Norway was a weakly acidified lake with a pH of 5.2–5.6, and an average concentration of SO4 of 330 μeq L?1. The total Al concentration varied between 10 and 20 μeq L?1 (expressed as Al3+). The lake supported populations of brown trout and perch and had supplied about 100 people with drinking water until the late 1980's. During 1986–1989, a dramatic change in the water chemistry occurred because of blasting of and weathering of sulphidic gneisses in the watershed. The oxidation of sulphide to sulphate (sulphuric acid) caused an increase in the SO4 concentration of the draining stream of up to ≈ 4800 μeq L?1. Weathering and/or cation exchange of Ca and Mg neutralized approximately 52% of the protons from the sulphuric acid production, while about 46% were consumed by mobilization of aluminium and iron. Nevertheless, about 2% of the hydrogen ions from the sulfuric acid were still present, which resulted in a stream pH of 4.0. In the lake, the pH was 4.4, and the concentrations of all major cations and anions were significantly lower than in the heavily affected stream. Mixing of the stream water with lake water, formation of aluminium-sulphate complexes and coprecipitation of Ca may explain the resulting concentrations of major ions in the lake.  相似文献   

8.
Three months after neutralization concentrations of methylmercury (MeHg) were higher in the water of the limed than in the control basin of a small lake. After two years, the concentrations in the limed basin were somewhat lower than in the control (0.056–2.19 ng L?1 and 0.129–2.65 ng L?1, respectively). The highest concentrations were found in the anoxic hypolimnia. The total amount of MeHg in the water mass of the lake varied from 19 to 68 mg, showing a drop after spring and autumn overturns and a maximum during stratification periods. The total Hg concentrations of fish in L. Iso Valkjärvi varied from 0.06 to 0.14 μg g?1 (ww) in whitefish to 0.1 to 0.7 μg g?1 in perch and to 0.2 to 1.4 μg g?1 in pike. The total amount of MeHg bound in the fish of the lake was quite similar to that in the water column, 43 to 59 mg in 1990–1993, 33 to 47 mg of which was in the perch population.  相似文献   

9.
The concentration of Hg in muscle was monitored during 10 to 12 years in different size and age groups of pike (Esox lucius) and perch (Perca fluviatilis). The study was performed in one reference and five lime treated lakes. Before liming, the highest levels of Hg in fish were measured in a lake with an annual mean pH just above 5.0. Lower levels were obtained both in lakes which were more acidified and in those which were less acidified. After the start of liming, the fastest and largest changes were obtained in the lakes which were moderately acid before liming (mean pH 5.4–5.8). In small perch, the Hg-concentration was markedly reduced in two years and showed an 80 % decrease in ten years. A slower response was registered in the lakes originally having about 0.5 units lower pH. In the most acidified lake (pH 4.9) the concentrations even increased the first years after liming, but decreased again later on. The possible mechanisms involved are discussed.  相似文献   

10.
HNO3 is more efficient in acidifying lakes than has been generally believed. This is because as nitrate loading to lakes increases, the efficiency of in-lake nitrate removal decreases markedly. Efficiencies decrease because algal N requirements are exceeded and because denitrification, which becomes an important removal process, is not as efficient as algal removal. Thus, nitrate and the accompanying H+ accumulate and HNO3 becomes an important factor in acidification. Data from an experimentally acidified system suggest that midsummer surface-water nitrate concentrations in excess of only 1 µmol L?1 indicate that algal requirements have been exceeded. While 1 µmol L?1 NO3 ? is not a significant quantity in terms of affecting the acidity of the water, it is useful as an indicator to identify lakes where algal requirements have been exceeded and where further increases in HNO3 loading could lead to lake acidification.  相似文献   

11.
Abstract

Hydroponic studies with soybean (Glycine max [L.] Merr.) have shown that µmol L?1 additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+in the mmol L?1 concentration range. The objectives of this study were to assess the ameliorative effects of Mg on soybean root growth in acidic subsoils and to relate the soil solution ionic compositions to soybean root growth. Roots of soybean cultivar Plant Introduction 416937 extending from a limed surface soil compartment grew for 28 days into a subsurface compartment containing acid subsoils from the Cecil (oxidic and kaolinitic), Creedmoor (montmorillonitic) and Norfolk (kaolinitic) series. The three Mg treatments consisted of native equilibrium soil solution concentrations in each soil (50 or 100 µmol L?1) and MgCl2 additions to achieve 150 and 300 µmol L?1 Mg (Mg150 and Mg300, respectively) in the soil solutions. Root elongations into Mg-treated subsoils were compared with a CaCO3 treatment limed to achieve a soil pH value of 6. Subsoil root growth responses to the Mg treatments were less than for the lime treatments. Root length relative to the limed treatments for all subsoils (RRL) was poorly related to the activity of the soil solution Al species (Al3+ and Al-hydroxyl species) and Mg2+. However, the RRL values were more closely related to the parameters associated with soil solution Ca activity, including (Ca2+), (Al3+)/(Ca2+) and (Al3+)/([Ca2+] + [Mg2+]), suggesting that Ca could be a primary factor ameliorating Al and H+ rhizotoxicity in these subsoils. Increased tolerance to Al rhizotoxicity of soybean by micromolar Mg additions to hydroponic solutions, inducing citrate secretion from roots to externally complex toxic Al, may be less important in acid subsoils with low native Ca levels.  相似文献   

12.
Netting surveys of lakes varying in pH (4.4–7.1) showed that lake trout (Salvelinus namaycush) populations fail to recruit at pH <5.5 and are lost from lakes with pH<5.2. Brook trout (S. fontinalis) were extirpated in lakes with pH <5.0. In regional chemical surveys of Ontario lakes, it was found that 2% of sampled brook trout lakes and 2.5% of lake trout lakes were acidified (alkalinity <0 uEq L?1). Threshold pH levels determined from fisheries assessments were used to estimate that 1% of lake trout and brook trout populations have been lost due to acidification.  相似文献   

13.
Atlantic salmon, Salmo salar, smolts of hatchery origin were held for 5 to 16 days in ambient (pH 6.35, labile Al = 60 µg L?1), limed (pH 6.72, labile Al = 58.4 µg L?1), or acidified (pH 5.47, labile Al=96 µg L?1) water from the Narraguagus River in Maine, USA. Wild smolts were captured in the same river in rotary traps and held for up to two days in ambient river water. Osmoregulatory ability was assessed by measuring Na+/K+ ATPase activity, hematocrit, and blood Cl concentration in freshwater, and after 24-hr exposure to seawater. Hatchery smolts exposed to acidic water and wild smolts displayed sub-lethal ionoregulatory stress both in fresh and seawater, with mortalities of wild smolts in seawater. Using ultrasonic telemetry, hatchery-reared ambient and acid-exposed, and wild smolts were tracked as they migrated through freshwater and estuarine sections of the river. The proportion of wild smolts migrating during daylight hours was higher than for hatchery-reared smolts. Wild smolts remained in the freshwater portions of the river longer than either group of hatchery smolts, although survival during migration to seawater was similar for all three treatments. Acid-exposed hatchery-origin and wild Narraguagus River smolts were both under ionoregulatory stress that may have affected their migratory behavior, but not their survival for the time and area in which we tracked them.  相似文献   

14.
A two year study of planktonic and littoral microcrustaceans (Cladocera and Copepoda) from 15 lakes in the southeastern part of Norway, Østfold county, document the recovery of acidified lakes due to liming. Six lakes that where limed about 10 years ago, seven acid and two neutral reference lakes, were sampled twice a year (1998 and 1999). One acid lake was limed in autumn 1998. Qualitative nethaul samples from the deepest part of the lake and from the most frequent habitat in the littoral zone were used. The limed lakes had a species composition which indicates that these lakes are about to recover. Species associated with neutral lakes dominates while acid-tolerant species were rare. The acid-sensitive species, Daphnia longispina and D. cristata, were found in the limed lakes. This study shows the usefulness of a low-cost sampling program where microcrustaceans are used as bioindicators of recovery.  相似文献   

15.
Liming to neutralize acidic surface waters involves a possible risk of toxicity to fish due to precipitation or changes in speciation of Al. We report the response of captive brown trout to the experimental liming of an acid stream rich in Al. Within 15 m of lime dosing 0.22 µm filterable Al fell from 580 to 230 µg L?1, and to 120 jig L?1, within 30 m, though total Al was unchanged. After 24 hr, fish mortality was 100% at untreated acidic sites, 80% up to 30 m downstream of liming, declining to zero within 100 m. Mortality was 70% at 15 m below the confluence of an acidic tributary with the limed stream, despite little change in pH or total Al concentration. Mortalities were significantly correlated with concentrations of Al and Fe in gill tissues, and with 0.22 µm filterable Al and Fe in the water, but not with particulate Al or Fe. AI(OH)4 ?, precipitating A1 or polymeric hydrolysis products are all possible causes of the observed toxicity. Iron may have also have contributed, but the stream concentrations of this metal were relatively low. The practical conclusion is that changes in Al chemistry, where waters of differing acidity mix, may be important in some circumstances where river systems are limed selectively.  相似文献   

16.
Acid sensitive headwater lakes (n=163) throughout Finland have been monitored during autumn overturn between 1987–1998. Statistically significant decline in sulphate concentration is detected in 60 to 80 percent of the lakes, depending on the region. Median slope estimates are from ?1.1 µeq L?1 in North Finland to ?3.3 µeq L?1 in South Finland. The base cation (BC) concentrations are still declining especially in southern Finland (slope ?2.5 µeq L?1), where every second lake exhibits a significant downward trend. The BC slope is steeper for lakes with less peatlands, more exposed bedrock, longer retention time and southerly location, but these factors are inter correlated. Gran alkalinity slope medians for the three regions range from 1.4 to 1.8 µeq L?1 yr?1. No significant negative alkalinity trends were detected. The similarity in the slopes of SO4, BC and alkalinity in this data compared to seasonal sampling data from Nordic Countries can be regarded as indirect evidence that autumnal sampling is representative for long term monitoring for these ions. There are no indications of increased organic carbon in lakes, as found in some recent trend analyses of similar regional data sets. Although the processes behind the positive development in these lakes have to be revealed with site- specific intensive studies, this data suggests, that the initial recovery from lake acidification in Finland is a regional phenomenon.  相似文献   

17.
During the summers of 1981-1984, 19,714 fish (23 species) were netted in 234 Nova Scotian lakes. Surface and mid-depth water samples were also analyzed for major ions, metals, and DOC. Lakewater pH varied from 4.4 to 7.7, including eight lakes which produced no fish in standard 23-hr net sets. Fish data were partitioned into 6 pH groupings for analysis. Stepwise multiple regressions of fish species vs. H+, S04,A1, Fe, and Mn showed little predictive power. Productive lakes ranged up to 530 μg L?1 Al, 1680 pg L?1 Fe, and 836 μg L?1 Mn. Apart from pH, fish distribution and abundance showed no significant relationships with water chemistry data. We note, however, that the more acidic lakes had fewer species of fish.  相似文献   

18.
The concentrations of Al, Be, Cd, Cu, F, Fe, Mn, Pb, and Zn were monitored in five glacial lakes and one man-made lake in the southwestern part of the Czech Republic. The lakes had median pHs of 4.4 to 6.5 during 1984 to 1995. Decreases in the concentrations of Mn and Pb occurred in five acidified lakes. The concentrations of AlT, Be, Cd, and F decreased in the four chronically acidified lakes, Zn decreased in two lakes. Concentrations of Cu and Fe remained unchanged. The decreases in Be, Mn, and Zn concentrations were proportional to the decrease in CSA (CSA = SO4 2- + NO3 -+ Cl-); decreases in AlT, Cd, and Pb concentrations were proportionately higher, while F was lower. The greater decrease in the Pb concentrations (61 to 79%, at a rate up to 0.15 μg L-1yr-1) was caused by pronounced decreases in deposition of Pb derived from mobile sources. The decrease of AlT concentrations was dominated by a decrease in Al3+, whose concentration decreased by 51 to 86%. The concentrations of complexes Al(OH)2+, Al(OH)2 +, AlF2+, and AlH3SiO4 2+ also decreased. The decrease in the concentrations of inorganic forms of Al (Ali) compensated 65% of the decrease in CSA. The Cd concentrations were highly variable in the years 1986 to 1988 because of variable amounts of accumulation on particles.  相似文献   

19.
Two species of fish, omnivorous Catostomus commersoni (white suckers) and carnivorous Perca flavescens (yellow perch) were collected from three natural lakes with different pH ranges (circumneutral, pH 6.5 to 6.8; variable, pH 5.8 to 6.7; and acidic, pH 4.9 to 5.4). The lakes are located in the North Branch of the Big Moose River drainage system in the New York State Adirondack Park Preserve. Concentrations of potentially toxic elements (Al, Cd, Cu, Ph, and Se) were measured by electrothermal atomic absorption spectrophotometry in water, sediment and fish (bone, gill, kidney, liver and muscle) from each lake. The results showed that concentrations of Pb and Cd were significantly higher (P < 0.05) in some of the tissues of the fish collected from the acidic lake. Also, the yellow perch from the acidic take had significantly higher (P<0.05) Se concentrations in their muscle and livers than fish from the other lakes. The concentrations of Al were elevated in the gill tissues of both fish species from the acidic lake relative to fish from the other lakes. Possible mechanisms contributing to these differences in tissue concentration are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号