首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Acid-induced fish damage in small lakes in southern Finland was studied in a fish status survey of eighty lakes from 1985–1987. Later, twenty of these lakes were selected for further monitoring. A sampling of these lakes from 1988–1989 showed that the decrease in some perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) populations still continued. The results from the same lakes in 1992 showed that successful reproduction had taken place with many of the perch populations that had been close to extinction in 1985. In contrast, no signs of recovery in the roach populations were detected. The explanation for the appearance of new cohorts of perch could have been the decrease in acid deposition but the exceptional hydrological conditions of winters in the early 1990s may also have affected them. The different responses of the perch and roach populations were interpreted as a consequence of the different sensitivity of these two species to acidification. Even a slight improvement in the water quality has resulted in the appearance of strong new year-classes of perch, but not of roach. Therefore, more improvement in water quality is needed until a sensitive species like roach can reproduce again.  相似文献   

2.
The perch population of Lake Vähä Valkjärvi, a two hectare clear-water lake in southern Finland, decreased due to acid precipitation during the 1980s. During the early 1990s a decrease in acidic deposition resulted in slight improvement of water quality of the lake. This was followed by recovery of the reproduction of perch starting in 1991. A mark and recapture experiment in spring 1995 indicated a hundred fold increase in the population size of perch in a four year period. A decrease in the abundance of aquatic invertebrates was recorded during 1989–1996. This decrease well coincided with the recovery of the perch population, suggesting that increased predation by fish was responsible for the decrease. The occurrence of goldeneye young also dropped in L. Vähä Valkjärvi since 1993. This was thought to be due to increased food competition with perch.  相似文献   

3.
Yellow perch (Perca flavescens) were collected from six small acidic lakes in northwestern New Jersey. Analyses of muscle tissue identified a pattern of increased concentrations of Hg in fish from the most acidic lakes; levels of Cd and Pb were greatly elevated in livers of specimens from two of the most acidic lakes. At one site, Sunfish Pond, positive correlations between fish size and Hg levels in muscle and Cd concentrations in livers were detected. In only one case did Hg concentrations in muscle tissue exceed the U.S. FDA action level of 1 μg g?1 (wet wt).  相似文献   

4.
Responses to low pH of perch, Perca fluviatilis, from a naturally acid and a neutral lake were compared by 24 hr exposures to pH 4.6, 4.1 and 3.8 and by 72 hr exposures to pH 4.5. Plasma osmolality and plasma concentrations of Na and chloride decreased in fish from both lakes during acid exposures. Significant differences between the populations were observed at pH 4.1 and 4.5. Hematocrits of the fish from the acid lake increased rapidly and at higher pH compared with those of fish from the neutral lake. This was interpreted as an adaptation to their normal acidic environment, connected with the maintenance of red cell oxygen affinity. The perch from the acid lake maintained their muscle water balance at lower pH better than did the fish from the neutral lake.  相似文献   

5.
Two species of fish, omnivorous Catostomus commersoni (white suckers) and carnivorous Perca flavescens (yellow perch) were collected from three natural lakes with different pH ranges (circumneutral, pH 6.5 to 6.8; variable, pH 5.8 to 6.7; and acidic, pH 4.9 to 5.4). The lakes are located in the North Branch of the Big Moose River drainage system in the New York State Adirondack Park Preserve. Concentrations of potentially toxic elements (Al, Cd, Cu, Ph, and Se) were measured by electrothermal atomic absorption spectrophotometry in water, sediment and fish (bone, gill, kidney, liver and muscle) from each lake. The results showed that concentrations of Pb and Cd were significantly higher (P < 0.05) in some of the tissues of the fish collected from the acidic lake. Also, the yellow perch from the acidic take had significantly higher (P<0.05) Se concentrations in their muscle and livers than fish from the other lakes. The concentrations of Al were elevated in the gill tissues of both fish species from the acidic lake relative to fish from the other lakes. Possible mechanisms contributing to these differences in tissue concentration are discussed.  相似文献   

6.
In this study an attempt was made to describe the acidification history of a lake through the changes in the population structure and the growth of perch (Perca fluviatilis L.). The lake was generally considered fishless at the beginning of the 80s. Our catches in 1985 consisted mostly of large, old perch but there was also a younger year-class present, born in 1983. The oldest perch of (he catch were twenty years old. The slow growth of old perch suggests that the density of the population was quite high in the late 60s and early 70s. We caught only a few perch bom in the 70s, suggesting that reproduction was more or less completely unsuccessful then. The few that we did catch showed extremely high growth rates. This was interpreted as due to good feeding conditions, such as no competition for food in a sparse population. We concluded that the acidification-induced decrease in the perch population of Lake Orajärvi took place mainly during the 70s. This is supported by paleolimnological and modelling studies, In 1992, a higher number of 2+ perch were caught indicating successful reproduction in 1990. Since then, we have sampled the lake annually and recorded 0+ and 1+ fish every year. Perch in these new year-classes are clearly growing slower than those born in the last decade.This suggests that the population density has essentially increased. Successful reproduction in perch in recent years has been possible because of improvements in water quality due to decreased acid deposition and/or exceptional hydrological conditions during the 1990s.  相似文献   

7.
Acid deposition has led to acidification and loss of fish populations in thousands of lakes and streams in Norway. Since the peak in the late 1970s, acid deposition has been greatly reduced and acidified surface waters have shown chemical recovery. Biological recovery, in particular fish populations, however, has lagged behind. Long-term monitoring of water chemistry and fish populations in Lake Langtjern, south-eastern Norway, shows that around 2008, chemical recovery had progressed to the point at which natural reproduction of brown trout (Salmo trutta) reoccurred. The stocked brown trout reproduced in the period 2008–2014, probably for the first time since the 1960s, but reproduction and/or early life stage survival was very low. The results indicate that chemical thresholds for reproduction in this lake are approximately pH?=?5.1, Ali?=?26 μg l?1, ANC?=?47 μeq l?1, and ANCoaa?=?10 μeq l?1 as annual mean values. These thresholds agree largely with the few other cases of documented recovery of brown trout in sites in Norway, Sweden, and the UK. Occurrence and duration of acidic episodes have decreased considerably since the 1980s but still occur and probably limit reproduction success.  相似文献   

8.
9.
Although the decline in fish populations due to acidicwater in Norway started as early as in the 1920's the most rapid losses appeared during the 1960–70's. Until 1978, the populations of Atlantic salmon had disappeared from the southernmost part of Norway, and in these areas, more than half of the brown trout populations had been lost. Today, in spite of no increase in acid depositions, the fishery problems seems to continue at the same speed. Data based on interviews of the local fish authority shows that lakes still holding a fish population in the late 70's, have experienced a 30% loss of brown trout populations and a 12% loss of perch in the period 1978–1983. This trend have been confirmed by testfishing in lake systems having long data series. Salmon rivers on the western coast of Norway have experienced several episodes of fish kills due to rapid changes in water quality. These fish kills have mainly affected smolts of Atlantic salmon. Spawning migrating salmon on entering their acidified home river have also been affected. In Sweden, several salmon populations along the western coast have been lost due to acidification with no positive trends so far in the 1980's. Areas in central Sweden and in some high mountain areas are still experiencing a continuous and increasing acidification with detrimental effects on invertebrates and fish. In Finland, an increase in acidic deposition during the last decades have occurred, leading to acidification in the most sensitive freshwater systems. Although some acidified freshwater lakes are reported to have lost their fish stocks, few data on fish population effects are available.  相似文献   

10.
The aim of this comprehensive study is to estimate the effects and usefulness of liming Lake Alinenjärvi based on chemical, biological and socio-economic studies. Methodological standpoints concerning the limestone dissolution rate, acidic surges and reacidification are also discussed. L. Alinenjärvi (0.4S km2) is located near the city of Nokia with a surrounding population of over 5 000 (< 2 km). Before liming, the lake had only a sparse crayfish (Astacus astacus L.) population left, because reproduction had been failing since the early 1980s. The most important effect of liming is that it should connect with the potential production of crayfish. The roach (Rutilus rutilus L.) population was also affected. The liming improved the chemical quality of the water, and decreased also the Al and Mn concentrations. The number of phytoplankton species increased, and the species composition of periphyton changed after liming. The a-chlorophyll concentration in water remained low. Furthermore, crustacean zooplankton and benthic animals increased in abundance in the first late summer after liming. The diet analysis of perch (Perca fluviatilis L.) gave comparable results suggesting a possible positive effect of liming on their food resources. The improved water quality seems to make the reproduction of the crayfish possible again, but recovery would take several years. To guarantee a recovery, the introduction of new crayfish individuals and supplementary neutralizing methods would be needed. The results of a mailed survey showed that L, Alinenjärvi is a valuable water source for the local people. The most usual forms of leisure around the lake and shores are, however, outdoor recreation and swimming, with only minor usage for fishing. Despite that, though the immediate benefits would be negligible, a majority of local residents supported the continuation of liming even though they would have to carry the costs in the future.  相似文献   

11.
Concentrations of 29 elements were detected in the axial muscle, and 44 elements were detected in the gut contents of white suckers (Catostomus commersoni) and yellow perch (Perca favescens) from three lakes located in the New York State Adirondack Preserve. The study lakes were acidic Darts Lake, variable pH Lake Rondaxe, and circumneutral Moss Lake. For the majority of the elements, there were no clear differences in the muscle concentrations among fish inhabiting the three types of lakes. Two notable exceptions were Hg and Pb. With some exceptions, the highest muscle tissue Pb concentrations were found in fish from the acidic lake. For both species, the Hg was higher in the muscle than in the gut regardless of lake acidity. Other elements potentially toxic to humans (As, Cd, Ga, Pb, Se, and TI) were not accumulated in the muscle relative to the gut.  相似文献   

12.
Yearling yellow perch were collected from sixteen Muskoka-Haliburton lakes to determine interrelationships between water quality, Hg residues in fish and fish condition. The lakes studied were Precambrian shield lakes with a pH range of 5.6 to 7.3 and total inflection point alkalinities of 0.4 to 16.0 mg L?1. Mercury residues in yellow perch ranged from 31 to 233 ng g?1 and were inversely correlated (p < 0.001; r = 0.84) with lakewater pH. Stepwise linear regression analyses selected lakewater pH as the only significant parameter associated with Hg accumulations. Alkalinities, sulphate, Ca and dissolved organic carbon (DOC) were not selected as significant. Likewise, lakewater pH and Hg residues in yellow perch were inversely (p < 0.001) correlated with fish condition. Lakewater pH, accounted for 74% and Hg in fish a further 11% of the variability in fish condition. Terrestrial drainage size/lake volume ratios were also correlated (p < 0.05; r = 0.78) with Hg accumulations in perch from a subset of nine headwater lakes. No temporal trends in Hg residues were evident in yellow perch over a 9 yr interval (1978–1987).  相似文献   

13.
The concentration of Hg in muscle was monitored during 10 to 12 years in different size and age groups of pike (Esox lucius) and perch (Perca fluviatilis). The study was performed in one reference and five lime treated lakes. Before liming, the highest levels of Hg in fish were measured in a lake with an annual mean pH just above 5.0. Lower levels were obtained both in lakes which were more acidified and in those which were less acidified. After the start of liming, the fastest and largest changes were obtained in the lakes which were moderately acid before liming (mean pH 5.4–5.8). In small perch, the Hg-concentration was markedly reduced in two years and showed an 80 % decrease in ten years. A slower response was registered in the lakes originally having about 0.5 units lower pH. In the most acidified lake (pH 4.9) the concentrations even increased the first years after liming, but decreased again later on. The possible mechanisms involved are discussed.  相似文献   

14.
Nelson Lake, a moderately acidic (pH 5.7), metal-contaminated (Cu 22 μg L?1; Zn 18 ug L?1) lake, 28 km from the smelters at Sudbury, had a degraded fish community in the early 1970's, with lake trout (Salvelinus namaycush) scarce, smallmouth bass (Micropterus dolomieui) extinct, and the littoral zone dominated by the acid-tolerant yellow perch (Perca flavescens). Liming of the lake in 1975–76 increased pH to 6.4, and decreased metal concentrations. Chemical conditions have remained relatively stable in the 10 yr following base addition. Initially, it appeared that neutralization produced dramatic changes in the resident fish community. Yellow perch abundance declined rapidly after neutralization, lake trout abundance increased to the extent that 3.26 kg ha?1 were caught in the winter of 1980, and reintroduced smallmouth bass reproduced and established a large population. However, these changes in the fish community can not be directly attributed to liming, as water quality and the sport fisheries of an unlimed nearby lake also improved. Reduced emissions from Sudbury smelters were responsible for improvements in the untreated lake. Recovery of the lake trout population in Nelson Lake appears to have begun prior to liming. Of the lake trout sampled during the 1980 winter fishery, 65.8% were present prior to the chemical treatment. Predation by lake trout was the likely cause of the perch decline. Our results suggest that chemical conditions producing population level responses in fish have abrupt thresholds and that neutralization of lakes above these thresholds may not produce distinguishable effects.  相似文献   

15.
Up to 1978 51% of brown trout populations and 27% of perch populations in the four southernmost counties of Norway were lost. During 1983 the fish status of lakes in the two southernmost counties which in the period 1974 to 1978 still had fish were updated. During the period 1978 to 1983, 30% of the remaining brown trout populations and 12% of the perch populations were lost. By 1983 71% of brown trout populations and 43% of perch populations in this area have been lost. In October 1983, 623 (77%) of the lakes were sampled for analyses of water quality. The status and change in fish populations during the period from 1974–78 to 1983 were highly related to water quality status.  相似文献   

16.
In this paper we document the effects of acidification on fish populations in lakes in Sør-Varanger near the Russian border in northern Norway. We used questionnaires in order to assess the current status and distribution of different fish species, and conducted test-fishing to determine relative abundance (CPUE-T) and age structure. Acidification of surface waters in this area is due to emissions of SO2 from smelters on the Kola Peninsula in Russia (Nikel and Zapoljarnij) between 10 and 30 km from the Norwegian border. Sulphur deposition in Sør-Varanger ranges from 0.6 to 2.0 g S m-2 yr-1, which is similar to levels in the most acidified areas in southern Norway. However, a dominant fraction of the acidic deposition reaches the ground in particulate form during summer and autumn. Coastal areas in Sør-Varanger receive small amounts of precipitation; the annual mean is 580 mm. We obtained fish status from 401 lakes, about 40% of all lakes larger than 3 ha, which were inhabited by 236 and 293 populations of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta), respectively. The extent of fish damage was small as only three populations of Arctic charr were lost, while three populations of Arctic charr and eight populations of brown trout were at various stages of reduction. Damaged and lost fish populations were identified in smaller lakes at relatively high elevations (172–349 m) in six areas in the Jarfjord Mountains, covering a land area of 30.0 km2. Most of the damage probably occurred during the 1970s and 1980s. In lakes that supported or had supported Arctic charr and brown trout, we found a significant relationship between CPUE-T, and acid neutralizing capacity (ANC) and pH, and also between alkalinity and the concentration of inorganic Al for brown trout. In both species, the catch of fish in age groups 1+ and 2+ (CPUE-R) increased significantly with CPUE-T. Affected populations typically exhibited irregular age composition, and age-classes were missing, indicating that reductions in fish populations were due to recruitment failure. The limited fish damage is related to relatively good catchment resistance to acidic inputs, small amounts of wet deposition as well as precipitation. These conditions result in low accumulation of acidic compounds, producing less acidic run-off waters and few episodes of unfavourable water quality.  相似文献   

17.
In order to test whether major reductions in acid inputs had improved water quality sufficiently for fish populations to recover, we stocked wild European perch (Perca fluviatilis) in three highly acidified lakes that had previously supported this species, and in one limed lake. The fish, which were introduced from a local lake (donor lake), generally ranged from 12 to 16 cm in total length, and were stocked at densities of 117–177 fish ha?1. The untreated lakes were highly acid, with minimum pH values and maximum inorganic aluminium concentrations (Ali) during the spring of 4.6–4.7 and 118–151 µg L?1 respectively. In the limed lake, the corresponding values for pH and Ali ranged between 5.8 and 6.6 and 5 and 19 µg L?1 respectively. Gill-netting in two subsequent years after the introduction yielded only a few recruits (0+) and one adult in one of the three acidified lakes in one year only. However, stocked perch reproduced successfully in both years in the limed lake. There was a significant linear relationship between the catches (CPUE) of juvenile perch (age 0+) in the different lakes in the autumn and the water quality in May (time of hatching), both in terms of Ali (r 2=0.934, P<0.05) and pH (r 2=0.939, P<0.05). Our data suggest unsuccessful recruitment in waters of pH <5.1 and Ali>60 µg L?1.  相似文献   

18.
The hypothesis that acidification has reduced or eliminated fish populations in certain areas of the eastern United States was investigated by examining present and historical fishery survey records. The causes of acidification (e.g., atmospheric deposition) were not specifically considered, although instances of obvious alternative explanations (e.g., acid mine drainage, organic acids) were avoided. The number of usable data sets located was small. Trend analyses are severely limited by the lack of high quality historical data. The strongest evidence for fisheries declines associated with acidification is provided by data for the Adirondack Mountain region of New York. In some lakes, fish populations have declined or disappeared; lakes experiencing fishery declines are now acidic. Alternative explanations for changes in fish communities over time were examined. In 49 lakes, some or all fish populations have apparently been lost with no available explanation other than acidification. Extrapolation of these data to the entire Adirondack Mountain region suggests that perhaps 200 to 400 lakes may have lost fish populations as a result of acidification. Streams in Pennsylvania and Massachusetts also had documented declines in fish populations that were associated with acidity; however, the data are fewer and less complete than those for New York. Acidification effects on fishery resources in other regions of the eastern United States are apparently minimal. The extent of the damage to date appears small relative to the total resource.  相似文献   

19.
We adapted a reduced-form model, built to predict the aquatic effects of alternative nitrogen and sulfur emissions scenarios on Adirondack lakes, New York, for use on high elevation lakes of Maine (HELM), USA. The Tracking and Analysis Framework (TAF) model was originally designed to evaluate the biotic, economic, and health effects of acid deposition. The TAF model developed in our study was used to assess the biotic effects of different levels of sulfate deposition resulting from alternative emissions scenarios. The aquatic portion of the model is based on a lumped-parameter watershed chemistry model, MAGIC (Model of Acidification of Groundwater in Catchments). The original TAF model was built by calibrating MAGIC to 33 lakes in the Adirondack Mountains. We calibrated MAGIC to 78 HELM lakes, and built reduced-form models from these MAGIC predictions. We evaluated TAF predictions of acid neutralizing capacity (ANC), a fish acid stress index (ASI), and the probability of fish presence in 2030 for four different SO2 emissions-reduction scenarios. The most dramatic emissions reduction scenario produced only modest increases in mean ANC (16.8 μeq/L ± 7.9 μeq/L) and slight increases in mean predicted probability of presence of acid-sensitive fish (0.07± 0.09) across all lakes. However, a small number of lakes were predicted to have more substantial increases in ANC and improvements in other conditions for acid-sensitive fish. Our results reflect the reality that many of the high elevation lakes of Maine historically had low ANC and that some were even acidic in pre-industrial times. Thus, ’recovery’ for most of the high elevation lakes of Maine will be modest under any scenario of reduced acidic deposition.  相似文献   

20.
Studies are reported on two small lakes at Sudbury, Ontario located close to a nickel-copper smelter which closed in 1972. At that stage, Baby Lake had a pH of 4.0–4.2 while the adjacent Alice Lake had a pH 5.9–6.3. Both lakes were almost entirely devoid of algae and had neither Zooplankton nor fish. Soon after the closure of the smelter, with its large airborne volume of sulphur dioxide and of copper and nickel containing particulates, the chemistry of the lakes began to change. By 1985, Baby Lake had changed from pH 4.0 to 6.8 and is now at pH 7.2. The pH of Alice Lake increased from a low of 5.9 in the early 1970s to 6.9–7.4 in the mid 1980s and is now at 7.3. Copper and nickel concentrations also decreased in both lakes during this period. The first biota found in the lakes in the post-smelter stage in the early 1980s were benthic red chironomids, planktonic rotifers, and a limited number of phytoplankton species, of which Rhizosolenia was the most common. By the 1990s, 13 phytoplankton species were present in each lake, with a substantial Zooplankton fauna (14 species) of rotifers, copepods, and cladocerans. There are now numerous insect larvae in the sediment and some small fish in both lakes. The biological recovery, which followed substantial reductions in acidity and in soluble nickel and copper concentrations in the waters, is a slower process than chemical recovery and is initially characterized by the dominance of a few species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号