首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the joint prefermentative maceration and hyperoxygenation of Airén white must and wine on the phenolic content, chromatic characteristics, volatile composition, and sensory characteristics, not previously described in combination, have been evaluated. A total of 20 phenolic and 149 volatile compounds have been identified and quantified for that purpose. As a consequence of the oxygen addition, the concentrations of hydroxycinnamic acid derivatives and flavan-3-ols decreased (above all t-GRP and (+)-catechin), leading to color stabilization, but also the concentrations of several volatile compounds with a great importance for quality aroma decreased. Prefermentative skin maceration, previously applied to the hyperoxygenation of Airén musts, provided the aforementioned color stabilization in the respective wine but also increased the content of short-chain fatty acid esters and terpenes and decreased the concentration of C(6) alcohols. That combination of prefermentative treatments (skin maceration followed by must hyperoxygenation) produced an improvement of the global impression of the final wine based on significantly better scores of tropical fruit, body, and herbaceous notes.  相似文献   

2.
Wines from Pedro Ximénez (PX), Fino, botrytized Sauternes, and Cava were screened by gas chromatography-olfactometry (GC-O), and the most relevant aroma compounds were further quantified in six different wines of each group. The comparison of GC-O and quantitative data with similar data from white young wines has made it possible to identify the aroma compounds potentially responsible for the specific sensory characteristics of these wines. Results have shown that all these wines are relatively rich in 3-methylbutanal, phenylacetaldehyde, methional, sotolon, and the ethyl esters of 2-, 3-, and 4-methylpentanoic acids. While Cava has a less specific aroma profile halfway between these special wines and young white wines, PX is richest in 3-methylbutanal, furfural, beta-damascenone, ethyl cyclohexanoate, and sotolon; Fino in acetaldehyde, diacetyl, ethyl esters of branched aliphatic acids with four, five, or six carbon atoms, and 4-ethylguaiacol; and Sauternes in phenylacetaldehyde, 3-mercaptohexanol, and 4-methyl-4-mercaptopentanone.  相似文献   

3.
The specific activity of a whole cell acid urease preparation was tested in five wines manufactured in the Apulia region of Italy in the 2003 vintage at both short and long treatment times, thus confirming the validity of the pseudo-first-order kinetic model to describe urea removal in real wines. The ratio between the experimental pseudo-first-order kinetic rate constant (kIe) for any real wine tested and that (kI) referred to a model wine solution having the same composition and pH reduced from about 0.21 to 0.02 as the overall content of phenolic compounds (P) increased from 109 to 853 g m-3 of gallic acid equivalent (GAE). The specific inhibitory effect of such compounds was explained by accounting for the equilibrium constant (KP) of the reaction of polyphenols with acid urease, which was found to be about 21 g of GAE m-3 for the real wines tested, whereas it ranged from about 16 to 45 g of GAE m-3 when the model wine solution was enriched with tannins extracted from grape seeds or skins, respectively. A sequential experimental procedure consisting of accelerated acid urease tests at high doses of enzyme followed by accelerated ethyl carbamate tests on the resulting acid urease treated wine was recommended to assess preliminarily the technoeconomic feasibility of the acid urease hydrolytic process for the wine of concern. Keywords: Acid urease; real and model wines; phenolics; pseudo-first-order kinetic rate constant; inhibitory effect; urea degradation kinetics.  相似文献   

4.
Glycosylated α-galactosidase (melibiase) has been purified from white chickpea ( Cicer arietinum ) to 340-fold with a specific activity of 61 units/mg. Cicer α-galactosidase showed a M(r) of 45 kDa on SDS-PAGE and by MALDI-TOF. The optimum pH and temperature with pNPGal were 4.5 and 50 °C, respectively. The K(m) for hydrolysis of pNPGal was 0.70 mM. Besides hydrolyzing the pNPGal, Cicer α-galactosidase also hydrolyzed natural substrates such as melibiose, raffinose, and stachyose very effectively; hence, it can be exploited commercially for improving the nutritional value of soy milk. Galactose was found to be a competitive inhibitor. The property of this enzyme to cleave the terminal galactose residues can be utilized for converting the group B erythrocytes to group O erythrocytes.  相似文献   

5.
The aroma profile of a Slovak white wine made with Devín grapes was evaluated by 13 expert judges. The panel evaluated the orthonasal and retronasal aroma profiles, as well as the profile of residual wine aroma found in the empty glass after the consumption. For the majority of attributes, the orthonasal perception was the most intense, followed by retronasal, and finally by the residual odor. Varietal wine Devín possessed primarily a "Muscat" odor by nose, together with intense fruity, sweet, and herbaceous notes. Data were analyzed by generalized procrustes analysis. Two primary clusters separated orthonasal ratings from both retronasal and residual odor ratings. Similar results were obtained by analysis of variance. The relative proportion of "heavy" aroma notes, likely related to polar odorants, increased in retronasal and residual odor profiles. The gas chromatography-olfactometry profile revealed a great complexity and showed that the characteristic aroma of this variety seems to be a mixture of Muscat, Gewürztraminer, and Sauvignon-Blanc, being rich in linalool, cis-rose oxide, and 4-methyl-4-mercaptopentanone.  相似文献   

6.
Abstract

Pansies are one of the most popular annual bedding plants in the United States. Growth and uptake of essential nutrients as influenced by N‐form ratio was evaluated in pansy as well as what role pansy nutrition plays in the protection of pansy against feeding damage by white‐tailed deer provided by selected repellents. Plants were grown under three N‐form ratios: 100:0, 50:50, and 0:100NO3:NH4. Dry weight was highest for pansy treated with 100:0 and lowest for plants treated with 0:100 NO3:NH4 Mean quality ratings were 4.07 for pansies grown with 100:0,1.80 for pansies grown with 50:50, and 0.78 for pansies grown with 0:100. Potassium (K), magnesium (Mg), and manganese (Mn) content was lower in plants treated with 0:100 than in those treated with 100:0. Ammonium may have competed with these cations for uptake. Boron (B), copper (Cu), molybdenum (Mo), and aluminum (Al) content was highest in plants treated with N‐NH4. There was no significant difference shown in nutrient levels caused by repellent treatments. Feeding damage was shown to be affected by N‐form ratio only on Day 3 of the study. Of the three repellent treatments [Deer and Rabbit Repellent (Thiram), Deer Away purrescent egg spray, and no spray], Thiram provided the greatest protection to pansies over the study period.  相似文献   

7.
Abstract

Vertisols of India are developed over isohyets of 600 to 1500 mm, and their chemical cycles are set by drainage, landforms, and particle size, which results in variable pedogenic development within the otherwise homogeneous soils. The purpose of this study was to identify pedogenic processes in the distribution of total and DTPA‐extractable zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). The soils are developed over basaltic parent material of Cretaceous age. Soil samples were drawn from genetic horizons of the 13 benchmark profiles and analyzed by using HF–HClO4 acid for total and DTPA extraction. Correlation coefficients were calculated taking all samples together. The total concentration varied from 24 to 102 mg kg?1 for Zn, 21 to 148 mg kg?1 for Cu, 387 to 1396 mg kg?1 for Mn, and 2.36 to 9.50% for Fe. Their variability was proisotropic and haplodized, and their concentrations increased with advancing isohyets. Within the isohyets, hindrance in drainage caused retention of Zn and Cu but loss of Fe. The piedmont soils had more Fe than alluvium soils. The spatial distribution of total contents of Zn, Cu, and Fe was influenced by the pedogenic processes associated with Haplusterts but not with provenance materials. Surface concentrations of the elements by biotic lifting and/or harvest removal were negated by the pedoturbation that further contributed to the irregular distribution of the elements in the profiles. Total Zn and total Cu had positive coefficients of correlations with coarse clay, whereas total Mn and total Fe were positively correlated with fine clay. The DTPA‐extractable forms were functions of isohyets and drainage and showed association with organic carbon content and coarse clay.  相似文献   

8.
Abstract

Yields were evaluated three years after applied treatments to determine if responses that were not evident during earlier years eventually occurred. Potassium sulfate was applied to established, non‐irrigated, K deficient trees on fine textured soil by banding, placing in augered holes, adding to the backfilled trenches, and by injecting into the soil. Trenches were dug in the fall beside trees to break roots and ammended during backfilling with K2SO4, dolomite lime or combinations of the two. Additional trees received a heavy compost mulch in the early fall. Trenching treatments were generally detrimental. Trenching alone reduced yield and leaf Ca but increased fruit soluble solids content. Trenching plus K2SO4, trenching and lime, all soil amendments, and mushroom compost elevated leaf K from deficient or below normal to the normal range, but decreased leaf Mg. Most K application techniques eventually increased yield, but simple surface applications of K2SO4 in a narrow band were as effective as other more costly procedures. Mulching treatments appear to be as effective as K additions and produce quicker yield responses. Mushroom composts and alfalfa increased leaf N and yield in two years. Mushroom compost doubled yield even three years after a single application.  相似文献   

9.
Abstract

Nutrient solutions containing three levels of phosphate, nitrate, and chloride were applied to cigar‐wrapper tobacco (Nicotiana tabacum L.) plants growing in sand culture for a period of 18 days. Concentrations of other nutrient elements in the nutrient solutions were held constant and the solutions were applied to pots as needed to maintain favorable moisture conditions for plant growth. Plants were in the two leaf stage when transplanted and were maintained on a single nutrient solution for 38 days before treatments were started. At the end of an eight weeks growing period, plant leaves were harvested and analyzed for Ca, Mg, and Mn. Dry matter yield was significantly (P=0.01) increased when 2 mM/1 of Ca(NO3)2 replaced an equivalent amount of Ca(H2PO4)2 or CaCl2 in the nutrient solution. Nitrate significantly (P=0.05) increased Ca and Mg content and decreased Mn concentration in leaf tissue in comparison to chloride. Calcium and Mg content were significantly (P=0.05) decreased and Mn content of tobacco leaves was increased by phosphate in comparison to nitrate and chloride.  相似文献   

10.
Potato is one of the most important crops in the world because of its high nutritional value; however, traditional cultivation in bare soil may render low yields and poor quality. Crop production efficiency can be increased by using plastic mulching and row covers to modify root zone temperature and plant growth, in addition to reduction in pest damage and enhance production in cultivated plants. However, there is little information demonstrating the effect of row covers in combination with plastic mulch on potato. The aim of this study was to assess the change in root zone temperature and its effect on growth, leaf nutrient, and yield of potato using plastic mulch of different colors, in combination with row covers. Seed of cultivar Mondial was planted in May 2012. The study included four plastic films: black, white/black, silver/black, aluminum/black, and a control with bare soil, which were evaluated alone and in combination with row covers removed at 30 days after sowing in a split-plot design. Higher yields were obtained when no row cover (43.2 t ha?1) and the white/black film (42.2 t ha?1) were used. Leaf nitrogen, sulfur, and manganese concentration were higher in plants when row cover was used; in contrast, no–row cover plants were higher in Fe and Zn. Mulched plants were higher in Mn concentration than control plants. There was a quadratic relationship between mean soil temperature and total yield (R2 = 0.94), and between plant biomass and total yield (R2 = 0.98), between leaf area with total yield (R2 = 0.98).  相似文献   

11.
1,3-β-Glucans are a class of natural polysaccharides with unique pharmacological properties and the ability to form single- and triple-helical structures that can be formed into resilient gels with the application of heat and humidity. The pharmacological capabilities of 1,3-β-glucans include the impartation of tumor inhibition, resistance to infectious disease, and improvements in wound healing. Curdlan is a linear 1,3-β-glucan that has been used extensively to study the nature of these helical structures and gels, and Curdlan sulfates have found ongoing application in the inhibition of HIV infection. 1,3-β-Glucan gels have been used in food science as stabilizers and encapsulating agents, in nanoscience as scaffolds to build nanofibers and nanowires, and in drug delivery to form nanoparticles and create helical micelles encapsulating polynucleotides. 1,3-β-Glucans are beginning to have enormous significance due to their dual nature as structure-forming agents and pharmacological substances, and research is especially focused on the application of these polymers in animal nutrition and drug delivery.  相似文献   

12.
13.
An experiment was conducted with Phalaris aquatica L. cv. Sirolan under hydroponic conditions in the glasshouse at constant temperature of 25°C and natural sunlight. Plants were grown in double pot system with four sulfur and three molybdenum levels along with all the major‐ and micro‐nutrient elements. There was increase in growth, nitrate‐reductase activity and contents of most of the nutrient elements at all levels of sulfur and 1.68 μ/L molybdenum. Molybdenum at 3.36 μg/L level inhibited growth and nitrate‐reductase activity and decreased concentration of nutrient elements in plant. The inhibitory effect of higher level of molybdenum is perhaps mediated through its role in the nitrate‐reductase.  相似文献   

14.
During a six‐year period (1980, 1985–1989), 20 different calcium (Ca) materials were sprayed at an early (3X; June to July), late (3X; July to August), and an early plus late (5X; June to August) timing on 25‐year‐old ‘Anjou’ pear (Pyrus communis L.) trees. Calcium chloride (CaCl2) sprays increased fruit Ca in the cortex by an average of 10.5% greater than in unsprayed controls and cork spot was reduced by an average of six‐fold. Yield from trees sprayed with Ca materials averaged greater than 13% more crop load than the unsprayed control trees. Leaf and fruit injury from CaCl2 sprays in 1980 were near borderline acceptability, but injury was reduced slightly by halving the spray concentration rate to 681 g CaCl2 per 379 liters of water in 1985 to 1989. Due to temperatures above 26°C, leaf and fruit injury from Ca sprays, particularly calcium nitrate [Ca(NO3)2], were more severe for the late or early plus late sprays than for the early sprays. Fruit size was slightly larger on trees sprayed only three times (early or late sprays) versus trees sprayed five times during the season (early plus late sprays). Best control of cork spot occurred with early plus late sprays. Best control of alfalfa greening and black end occurred with late or early plus late sprays. The importance of fruit Ca for controlling cork spot is illustrated when triiodobenzoic acid (TIBA) was sprayed on trees which resulted in reduced fruit Ca and increased incidence of fruit disorders, alfalfa greening, black end, and cork spot. Sprays containing nitrates or sulfates were frequently associated with a higher incidence of fruit disorders. Although fruit quality was not significantly influenced by Ca treatments or spray time, it was related to Ca in fruit peel or cortex due to annual variations in Ca concentrations.  相似文献   

15.
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat, with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage, impacting more the higher the SF concentration. SF had little to no effect on grain test weight, 1,000‐grain weight, hardness, protein content, semolina ash content, and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable, and other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour–commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production, but for the production of semolina, pasta, and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.  相似文献   

16.
The aim of the study was to examine effects of fall sprays of nitrogen (N), boron (B) and zinc (Zn) on nutrition, reproductive response, and fruit quality of tart cherry (Prunus cerasus L.). The experiment was conducted during 2008–2010 in Poland on mature ‘Schattenmorelle’ sour cherry trees, planted at a spacing of 4.0 × 1.5 m on a coarse-textured soil with low level of organic matter, and adequate reaction and availabilities of macro- and micronutrients. Tart cherries were sprayed with boric acid-B, ethylenediaminetetraacetic acid (EDTA)-Zn, and urea-N at 40–50 d prior to initiation of leaf fall according to following schema: (i) spray of N at a rate of 23 kg ha?1; (ii) spray of B and Zn at doses of 1.1 kg ha?1 and 0.5 kg ha?1, respectively; and (iii) spray of N, B, and Zn at the same rates as in the above spray combinations. The trees sprayed with water were served as the control. The results showed that postharvest spray treatments had no effect on defoliation, cold damage of flower buds, fruit set, yielding, plant N status, mean fruit weight, and soluble solids concentration in fruit. Postharvest sprays of B and Zn with or without N enhanced status of Zn and B in fall leaves, and B in flowers but had no impact on levels of the above micronutrients in summer leaves. Leaf-absorbed B was withdrawn in the fall, whereas Zn was immobile. It is concluded that postharvest B sprays can be recommended to increase B status in flowers of tart cherry, whereas fall sprays of urea-N and Zn are not able to improve plant nutrition of those nutrients the following season.  相似文献   

17.
Calcium (Ca) spray materials improved fruit quality as measured by control of bitter pit, fruit finish (appearance), increased red skin color, reduced incidence of scald, increased juiciness, texture, and fruit firmness of ‘Red’ and ‘Golden Delicious’ apples (Malus domestica, Borkh.). Concentrations of Ca in leaf and fruit tissues were increased by Ca sprays, especially calcium chloride (CaCl2)‐containing spray materials. Improved fruit firmness and control of bitter pit occurred for either standard recommended or high rates of Ca spray materials. At high rates of application, the only significant difference that occurred between early and late applications of Ca spray materials was that less leaf injury occurred with the early applications. Unsprayed ‘Red Delicious’ fruit from M.7 rootstocks had greater fruit peel Ca concentrations and a lower incidence of bitter pit but smaller fruit than fruit from trees on M.26 rootstocks. The above information is strong evidence that Ca sprays are important for the improvement of apple quality.  相似文献   

18.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

19.
Abstract

Application of industrial wastewater on agricultural lands increased the amounts of elements in soil and plants. To investigate the effects of wastewater on soil properties and element content in soil and plants, wastewaters of three industries (chrome chemical, wood and paper, and textiles) were examined in 2005. At harvest time, the soil samples were taken from depths of 0–15 and 15–30 cm, and the roots and shoots of rice, spinach, clover, and grass and grain of rice in an industrial wastewater–treated area and untreated area were sampled. Results indicated that the concentrations of zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) increased in river water when wastewater was discharged into it. Use of the river water, influenced by industrial wastewater, for irrigation of rice and other plants increased the amounts of organic matter and available Zn, Cu, Mn, and Fe in soil. Cation exchange capacity was correlated with available Cu and Fe in soil (+0.431** and +0.499**, respectively). Soil organic matter was correlated with available Zn, Cu, Mn, and Fe in soil. However, the clay content in soil did not correlate with these elements. Meanwhile, in roots, shoots, and grains of rice and roots and shoots of spinach, clover, and grasses of agricultural land influenced by industrial wastewater, the amounts of Zn, Cu, Mn, and Fe increased. Therefore, by increasing the amount of Mn in the soil, the concentration of Zn in rice grain decreased and the concentration of Cu and Mn increased. Transferred Zn concentrations to rice grain and shoots of spinach, clover, and grass were more than Cu and Mn and increased in rice grain.  相似文献   

20.
Abstract

Goethite, aluminum‐(Al)‐substituted goethite (GA2), and a system of kaolinite–goethite were examined for their ability to adsorb copper (Cu), zinc (Zn), and cadmium (Cd) as a function of pH, in two ionic strengths and two different metal concentrations. Specific surface area was determined by BET‐N2, whereas the charge development on the solid surface was studied in the pH range ~3.5 to ~10.0 by potentiometric titration under continuous flow of argon.

Constant capacitance (CCM) and the double‐layer model (DLM) were used to fit the titration and adsorption data with the help of the least‐square optimization program FITEQL32. In both models, surface site density was fixed at Ns=2.31 sites nm?2, whereas for CCM capacitance density was set at C=1.06. Alternatively, bibliographic suggestions for these two parameters were examined.

Aluminum‐substituted goethite exhibited higher specific surface area and adsorbed all three metals in lower pH values than the other solids. Moreover, GA2 exhibited point of zero salt effect (PZSE) higher than goethite, approaching that corresponding to Al2O3, possibly due to Al‐substitution, and the system exhibited PZSE values much higher than kaolinite, approaching that corresponding to goethite. The adsorption order for all three solids was Cu>Zn>Cd in any case, thus more Cu is adsorbed at a certain pH than Zn and even more than Cd, whereas the increase of metal concentration shifts the adsorption curve toward higher pH values.

Constant capacitance described the titration data satisfactorily, but by altering the Ns and C values, the fit became worse. Adsorption data are described by CCM, by emphasizing the formation of monodentate surface complex. Bidentate complex, in most of the cases, was of no importance in describing the data despite the evidence of its presence in recent spectroscopic studies for Cu and Cd on goethite. Alteration of Ns and C values worsened the fit in any case, and bidentate complex vanished. The DLM exhibited the worse fit in any case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号