共查询到2条相似文献,搜索用时 3 毫秒
1.
基于机载LiDAR的单木结构参数及林分有效冠的提取 总被引:4,自引:0,他引:4
[目的]基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。[方法]采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。[结果]树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R2=0.886 2,冠幅R2=0.786 4,冠长R2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。[结论]基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。 相似文献
2.
目的 点云密度是影响机载激光雷达数据获取和预处理成本的关键因素,探明点云密度对森林参数估测精度的影响,为机载激光雷达大区域森林调查监测应用技术方案的优化提供参考依据。方法 基于我国广西一个亚热带山地丘陵区域获取的机载激光雷达和样地数据,通过系统稀疏方法,将全密度点云(4.35点·m-2)分别稀疏至4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.5、0.2和0.1点·m-2,得到11个样地尺度的点云数据集,包括1个全密度和10个稀疏密度点云数据集;应用配对样本t检验方法,分析4种森林类型(杉木林、松树林、桉树林和阔叶林)中稀疏密度点云和全密度点云之间12个激光雷达变量的差异;通过变量和结构固定的多元乘幂模型式,分别采用不同密度点云数据集对林分蓄积量(VOL)和断面积(BA)进行估测,比较模型优度统计指标决定系数(R2)、相对均方根误差(rRMSE)和平均预估误差(MPE)的差异,并应用t检验方法分析稀疏密度点云VOL和BA估测值均值和全密度点云相应估测值均值的差异。结果 1) 点云密度较低时,稀疏密度点云分位数高度(ph25、ph50和ph75)的均值与全密度点云相应变量的均值存在显著性差异,但不同森林类型、不同变量出现显著性差异时的点云密度不同,各森林类型中稀疏密度点云平均高(Hmean)和点云高变动系数(Hcv)的均值与全密度点云相应变量的均值基本不存在显著性差异,但点云最大高(Hmax)的均值存在显著性差异;2) 各森林类型中,稀疏密度点云冠层覆盖度(CC)和中下层分位数密度(dh25)的均值与全密度点云相应变量的均值差异不显著(阔叶林dh25除外),但中上层分位数密度(dh50和dh75)存在显著性差异;3) 各森林类型中,稀疏密度点云平均叶面积密度(LADmean)的均值与全密度点云LADmean的均值存在显著性差异,当点云密度较低时,稀疏密度点云叶面积密度变动系数(LADcv)的均值与全密度点云LADcv的均值存在显著性差异;4) 各森林类型中,不同密度点云VOL和BA估测值差异很小,且均不存在显著性差异,但随点云密度降低,杉木林、松树林和桉树林VOL和BA估测模型的R2缓慢逐渐减小,rRMSE和MPE缓慢逐渐增大,森林参数估测精度逐渐降低,阔叶林VOL和BA估测模型的R2、rRMSE和MPE受点云密度变化影响不大。结论 点云密度降低导致激光雷达变量标准差增大是造成森林参数估测模型精度降低的主要原因,在实际机载激光雷达森林资源调查监测应用中,点云密度以大于0.5点·m−2为宜。 相似文献