首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
综合利用烟杆废料制取优质活性炭   总被引:6,自引:1,他引:5  
研究了以烟杆废料为原料,在微波辐照和传统加热下氯化锌法制取活性炭的方法.经对比实验得出,用微波辐照9min即可完成传统工艺中预热、干燥、炭化和活化4个阶段,活性炭产品的亚甲基监脱色力为170mL/g,微波辐照工艺的加热时间仅为传统工艺的1/20;用传统加热方法,炭化温度680℃,炭化时间1h,活化温度800℃,活化时间2h,活性炭的亚甲基蓝脱色力为150mL/g。2种方法制得的活性炭的亚甲基蓝脱色力均超过国家标准一级产品的指标(120mL/g)。  相似文献   

2.
微波处理对活性炭孔隙结构的影响   总被引:9,自引:3,他引:9  
在高纯氮气的保护下对活性炭在4种不同功率和作用时间下进行了微波改性处理,利用ASAP2010氮气吸附仪和X-射线分析仪测定了活性炭经微波处理后孔隙结构和基本微晶的变化,通过对比分析探讨了微波加热对活性炭孔隙结构的影响。结果表明:微波处理使活性炭比表面积变化不大,孔容稍有缩小,主要变化发生在中孔范围,孔径分布变化不大,只是向小孔方向发生稍微的移动,活性炭基本微晶增大,石墨化程度提高。  相似文献   

3.
采用微波加热技术,并结合红外热成像技术,研究了微波功率、预压高度、预热时间等因素对刨花板板坯中温度分布规律的影响。结果表明:刨花板板坯经微波预热处理后,内部温度分布均匀,但板坯表层因热损失和水分蒸发,导致板坯内部温度高于表层温度,形成温度梯度。同时,微波加热具有定向性,可在35 s内使板坯迅速升温30℃,比传统热传导具有更快的加热速度,且整个加热过程中始终能保持高效率。增加微波功率,降低预压高度,增加微波预热时间,有利于提高板坯整体温度,进而缩短热压时间,提高刨花板的生产效率,并降低单位产量能耗。  相似文献   

4.
本文以橡胶籽为原料,采用微波辐照氯化锌法制备活性炭。研究了浸渍时间、氯化锌浓度、微波功率和辐照时间等因素对活性炭吸附性能和得率的影响。确定了用橡胶籽制备活性炭的最佳工艺条件:浸渍时间24 h,氯化锌浓度50%,微波功率280 W,辐照时间7 min。在此工艺条件下制备的活性炭其碘吸附值为829.46 mg.g-1,亚甲基蓝吸附值为126.5 ml.g-1,得率可达23.8%。此工艺所需活化时间为传统方法的1/30。  相似文献   

5.
微波辐照毛竹梢制备活性炭   总被引:6,自引:0,他引:6  
以毛竹梢为原料,研究用微波辐照化学法制备活性炭的可行性。探讨了在微波功率900W条件下,微波辐射氯化锌法和磷酸法中各因素对产品得率、亚甲基蓝脱色力的影响。得到了微波辐射氯化锌法制备活性炭的最佳工艺:ZnCl2溶液质量分数50%,料液比1∶5(质量比,下同),辐照时间25min,浸渍时间24h,活性炭得率为46.3%,亚甲基蓝脱色力12.7mL/0.1g,是国家一级品标准(GB/T13803.2-1999,下同)的1.41倍。微波辐射磷酸法制备活性炭的最佳工艺:磷酸溶液质量分数40%,料液比1∶5,辐照时间20min,浸渍时间24h,活性炭得率为50.5%,亚甲基蓝脱色力11.0mL/0.1g,是国家一级品标准的1.22倍。  相似文献   

6.
采用正交试验,研究以竹屑废料为原料,用微波设备氯化锌法制备竹质粉状活性炭的可行性,探讨微波功率、活化时间、浸渍时间及氯化锌浓度对活性炭产品碘吸附值、得率的影响。结果表明,微波设备氯化锌法制备竹质粉状活性炭的最佳工艺为:微波功率1 000 W、活化时间50 min、氯化锌浓度50%、浸渍时间48 h。用此工艺制得的活性炭碘吸附值1070.3mg.g-1,得率达到32.3%。结果表明:微波加热比传统方法缩短活化时间,产品性能高于国家标准。  相似文献   

7.
金字塔形多管微波炭化炉的研制及其应用研究   总被引:2,自引:0,他引:2  
自行设计并制造了金字塔形微波谐振腔的炭化炉,3个微波管从3个方向进行辐照,谐振腔内部增加了微波搅拌器,改变了微波辐照均匀性.双层微波防泄漏炉门设计,降低了微波泄漏的风险.经过应用研究表明,微波辐照功率1160W,辐照时间18 min,制得活性炭的亚甲基蓝吸附值210 mL/g,为国家标准规定的活性炭一级品GB/T 13803.3 - 1999的1.75倍.在680 W条件下,微波辐照载苯酚废活性炭5 min,可以获得亚甲基蓝吸附值为110 mL/g的再生活性炭,优于国家规定的二级品标准.  相似文献   

8.
以中密度纤维板(MDF)厂废料为原料,采用微波辐射磷酸法制备活性炭。探讨了在微波功率900W条件下磷料比、水料比、辐照时间对产品活性炭各项主要指标的影响。得到了试验条件下微波辐射磷酸法制备活性炭的最佳工艺: 磷料比3.5:1,水料比1:1,辐照时间9min。用此工艺制备活性炭产品的得率39.44%,碘吸附值949.08mg/g,亚甲基蓝脱色力10.76mL/0.1g,苯酚吸附值350.25mg/g。本工艺方法为中密度纤维板厂废料的综合利用找到了新的途径。  相似文献   

9.
以油茶壳为原料,磷酸为活化剂制备活性炭。以碘吸附值及产率为指标,探究加热温度、加热时间、浸渍比、浸渍时间、升温速率对油茶壳活性炭吸附性能的影响,并采用正交法优化活性炭制备条件,采用比表面积孔隙分析、FT-IR、XRD、SEM进行表征。结果表明:油茶壳活性炭较佳的制备工艺为加热温度400℃、加热时间140 min、浸渍比3∶1、浸渍时间6 h,此条件下制得的活性炭碘吸附值为1694 mg/g,比表面积1872 m^(2)/g,平均孔径1.36 nm,总孔容积为1.269 cm^(3)/g,微孔孔容占总孔容的56.26%,表面具有丰富的孔结构。  相似文献   

10.
以蔗渣为原料,经漆酶预处理后通过微波辅助碱法提取半纤维素,研究了漆酶预处理对蔗渣半纤维素提取效果的影响,并采用扫描电子显微镜、比表面积及孔径分析仪和凝胶渗透色谱仪等对漆酶预处理前后的蔗渣形貌、孔隙特征和半纤维素相对分子质量等进行表征。结果表明:蔗渣经160 U/g漆酶预处理后的蔗渣表面有片状结构生成,与未处理样相比,总孔体积和比表面积明显增加,分别提高了26.7%和90.5%,且局部有孔洞出现。预处理后的蔗渣50 g(绝干)在氢氧化钠质量分数8%、两者固液比1∶20(g∶mL)、微波功率800 W、提取时间50 min、提取温度90℃的微波辅助碱法提取条件下,蔗渣半纤维素产率高达89.0%。  相似文献   

11.
采用微波辐照氯化锌法,对以酸枣核壳为原料制备活性炭开展了工艺及性能研究。通过正交试验法研究了不同因素:氯化锌浓度(A)、浸渍时间(B)、微波功率(C)、辐照时间(D)对酸枣核壳活性炭的得率、碘吸附值、亚甲基蓝吸附值的影响。结果表明:微波辐照氯化锌法制备酸枣核壳活性炭的最佳制备工艺条件为A3B1C3D2,即氯化锌浓度50%,浸渍时间14 h,微波功率700 W,辐射时间7 min;在此条件下,酸枣核壳活性炭的得率为60%,碘吸附值与亚甲基蓝脱色力分别为933.24 mg/g和111.92 m L/g;不同处理量的梯度试验表明,该工艺具备大规模处理酸枣核壳的能力。  相似文献   

12.
以生物质电厂灰为原料,NaOH为改性药剂,采用微波加热的方法对电厂灰进行改性,并利用BET方法对改性前后电厂灰进行表征。考察了微波强度、吸附时间等对改性电厂灰吸附Cd~(2+)的影响。实验结果表明:改性后电厂灰对Cd~(2+)的吸附性能明显优于未改性电厂灰,微波-NaOH改性提高了电厂灰的比表面积;在微波功率为500W、辐照时间为5min、NaOH浓度为1mol/L条件下吸附Cd~(2+)效果最佳。Fruandlich吸附模型比Langmuir吸附模型能更好地模拟改性电厂灰对Cd~(2+)的吸附过程,吸附动力学方程以准二级动力学方程拟合效果最优。  相似文献   

13.
微波辐射磷酸法制备竹材活性炭及表征   总被引:4,自引:0,他引:4  
以竹屑为原料,采用微波辐射磷酸法制备活性炭。讨论了微波功率、活化时间及磷酸质量分数等工艺条件对竹材活性炭吸附性能的影响。研究结果表明,在磷酸质量分数、活化时间和微波功率3个因素中,微波活化时间对活性炭质量指标影响最大,延长时间可以提高其产品的吸附性能;微波辐射磷酸法制备竹材活性炭的较优工艺条件为:微波功率600 W、活化时间16 min、磷酸质量分数50%。在此条件下制得的活性炭的碘吸附值850.6 mg/g、亚甲基蓝吸附值233.8 mg/g、比表面积920.5 m2/g。  相似文献   

14.
KOH微波活化法处理竹炭的研究   总被引:3,自引:0,他引:3  
研究了以自制的快速裂解产物竹炭为原料,采用KOH-微波辐射活化法制备竹质活性炭.利用正交试验探讨了不同因素对竹质活性炭性质的影响.最佳工艺条件为KOH质量分数 25 %,浸渍时间 24 h,微波功率 800 W,活化时间 7 min,所制备的活性炭产品的碘吸附值为 1 239.08 mg/g,亚甲基蓝吸附值为 274.95 mg/g,比表面积为 1 394.16 m2/g,亚甲基蓝吸附值为国家一级品标准(GB/T 13803.2-1999)的2.04倍,同时测定了活化前后竹炭的红外光谱.结果表明,活化后竹炭表面结构有了较大的修饰,增加了较多的表面化学官能团,从而提高了竹炭的比表面积和吸附性能.  相似文献   

15.
采用微波间歇辐照方法研究了微波辐照下乙酸松油酯的合成,确定的最适工艺条件为:催化剂磷酸-乙酐用量为原料松油醇质量的 4 %、微波功率 100 W、反应时间 2 h、酐醇比1.25∶1.最适工艺条件下,松油醇转化率为 96.92 %、乙酸松油酯产率为 86.53 %,其效果均比常规加热下明显提高,且反应时间仅为常规的1/8.  相似文献   

16.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

17.
提出了利用新原料的开发,以探索最佳工艺,采用乌梅果壳制备活性炭,微波功率1000W,以磷酸为活化剂,最佳磷酸浓度40%,微波最佳辐照时间为8min。制得的果壳炭碘值达1108.4mg/g。孔结构以0.5~10nm孔径为主,优于商业活性炭的标准。  相似文献   

18.
炭化温度对竹基活性炭孔结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以毛竹为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过SEM、XRD、BET、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了炭化温度对竹基活性炭材料结构和性能的影响。研究结果表明:随着炭化温度升高,活性炭材料的比表面积与总孔容、中孔孔容均不断减小,微孔比表面积和微孔孔容先增大后减小。其中炭化温度为500℃的样品BAC500比表面积为3447m~2/g,总孔容为1.96cm~3/g,在有机电解液中以1mA/cm~2的电流密度充放电时,比电容高达178.8 F/g,电流密度增大50倍容量保持率为74.6%,显示出良好的功率特性。活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率。  相似文献   

19.
以杜香叶片为原料,通过无溶剂微波蒸馏法提取精油.实验考察了原料的含水率、微波辐照时间以及微波辐照功率对精油得率的影响,得到的最佳提取条件为含水率75%,微波辐照时间30 min,微波辐照功率540 W.气质联用法分析了精油的化学成分,主要成分依次为桃金娘烯醛(24.47%)、脱氢桧烯酮(12.51%)和4-松油醇(10...  相似文献   

20.
载硫活性炭微波辐照解吸研究   总被引:13,自引:0,他引:13  
吸附了SO2的载硫活性炭,采用微波辐照法进行活性炭解吸及再生得到高浓度SO2产品气,以达到生产高浓度的制酸合格原料气SO2的目的,为低浓度SO2回收利用提供了一条有效途径。作者针对微波功率、载气量、活性炭量、再生时间及次数等影响SO2解吸的因素进行了实验研究。实验结果表明:在微波功率700W、载气流量0.3L/min、饱和活性炭质量8g以上、再生时间3min的条件下,SO2产品气浓度可达90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号