首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用立体插管式通风系统,对平均水分16.6%±1.3%(湿基)、堆高7m的稻谷堆进行恒温(25℃±1.5℃)通风干燥试验。试验结果表明:立体插管式通风干燥可以将整仓粮食水分降至14.2%±1.3%,水分分层现象明显改善,单位能耗为7.7kW·h/(1%H_2O·t),干燥成本较低。干燥后稻谷脂肪酸值、出糙率、整精米率依旧保持良好。  相似文献   

2.
研制了一款组合式钢板仓,配合通风导管使用,开展高水分稻谷就仓干燥试验,将初始水分含量为23.4%的稻谷降至13.5%(安全水分),且水分分层控制在0.3%/m粮层内,干燥后稻谷品质良好,单位能耗为2.9 kW·h/(t·1%)。  相似文献   

3.
偏高水分玉米就仓干燥节能通风试验   总被引:1,自引:0,他引:1  
在基建房式仓对当年收获入库的偏高水分玉米(入库平均水分15%),利用加速式节能轴流风机和地上笼通风系统进行实仓降水通风处理,试验结果表明,从入仓玉米装满一组地上通风笼开始依次通风,进行均匀降水,经过475 h的压入式通风作业,整仓玉米平均水分降至14.3%,降水通风的单位能耗是1.18 k Wh/(1%·t),实现了低温储藏.  相似文献   

4.
高水分地产玉米就仓干燥试验   总被引:1,自引:0,他引:1  
针对托市收购的阜阳地产高水分玉米,在高大平房仓内利用地上笼和就仓干燥系统对玉米进行干燥试验,检测了干燥过程中粮堆水分和脂肪酸值变化情况,并分析了干燥能耗和成本。结果表明:单位干燥能耗为3.57kW·h/(t·1%),干燥成本为6.50元/(t·1%)。同时,分析了干燥过程中存在的水分分布不均匀问题,并提出了解决方法。  相似文献   

5.
冬季,使用谷物冷却机对浅圆仓储存玉米进行冷却通风试验,探索在华南地区气候特点下,浅圆仓储存玉米的冬季保水降温通风方法。结果表明:粮堆温度降到了16.0℃左右,达到了准低温储粮的要求;粮堆的高温点消除,明显降低了粮层温差,粮温均衡;平均单位能耗0.18kW.h/(℃.t),远低于浅圆仓冷却通风E≤0.65kW.h/(℃.t)的要求,通风降温效率高;较好地保持了储粮的水分,平均水分变幅为-0.1%~0.0%,达到了保水通风的目的,提高了储粮的安全稳定性。  相似文献   

6.
圆形卧式通风储存仓小麦干燥试验研究   总被引:1,自引:0,他引:1  
为了解圆形卧式通风储存仓的干燥特性,以新收获高水分小麦作为试验材料,对干燥过程中小麦水分、温湿度、真菌孢子数等指标的变化规律进行研究。结果表明:以246 m~3/(t·h)的单位风量,经过28 h间断式通风,小麦平均水分由17.3%降为12.0%。干燥过程中,平均温度由29.3℃平稳升高到33.3℃,相对湿度由78.6%平稳降低到59.7%,干燥后小麦真菌孢子数为2.3×10~5个/g,未发生霉变。干燥前后淀粉、蛋白质、湿面筋含量等品质指标无显著变化,品质保持良好。经试验证明,利用圆形卧式通风储存仓能够达到小麦快速干燥的目的,为圆形卧式通风储存仓小麦干燥工艺优化及设备改进提供了参考依据。  相似文献   

7.
通过三种不同风机组合成的两种不同的通风方式试验对比,探索东南沿海地区浅圆仓进口大豆冬季通风降温的最适方法.试验结果表明:功率为18.5 kW的离心风机+功率为1.5 kW的轴流风机的组合通风方式可降温至11.4℃,其单位能耗为0.117kW·h/ (t·℃);功率为18.5 kW的离心风机+功率为1.5 kW的轴流风机...  相似文献   

8.
2019年1月2日~30日期间,对装粮高度分别5.9 m和6.1 m的小麦和稻谷高大平房仓(各4638 t和3409 t)采用自然冷空气进行降温通风,均采用4台0.55 kW的轴流风机上行吸出式通风,风机运转时间段每日20时至次日8时,共29 d。结果表明,小麦P1号仓粮堆平均温度由1月2日18.6℃降到30日12.2℃,单位能耗为0.021 kW·h/℃·t;稻谷P24号仓粮堆平均温度由15.9℃降到13.1℃,单位能耗是0.063 kW·h/℃·t。1月5日和3月11日的扦样分析表明,通风结束后粮堆水分保持不变,稻谷出米率和加工品质保持不变。精米破碎指数、以POD活性表示的陈化度、糙米含水率均能够反映稻谷粮堆通风的效果。籽粒破碎率能敏感地反映通风期间小麦籽粒的变化。  相似文献   

9.
小麦入库结束后,在高水分高温粮(平均水分14.3%,平均粮温37.8℃)粮堆内布设由通风竹笼和开孔PVC管组成的立体风网,利用轴流风机进行降水降温通风处理,结果表明,经过108 h吸出式通风作业,整仓小麦平均水分降至12.4%,平均粮温降至18.5℃,降水单位能耗0.98 kW·h/1%·t,达到了降水降温、消除储粮安全隐患的目的.  相似文献   

10.
采用了一种适用于多种仓型的"圭"形风道和移动式垂直扦插通风系统进行热风干燥。通过立体通风160h,全仓水分从18.9%降低到14.5%,整仓水分梯度差均小于0.6%/m粮层厚度,最大水分梯度差低于0.8%/m粮层厚度,有效地控制了3m以上堆高的水分垂直分层现象。试验单位能耗为3.58元/(t·1%水分),经济效益可观。  相似文献   

11.
选取三座同时期建造的同类型高大平房仓为试验仓房,对三个试验仓分别采取轴流风机通风、离心风机通风、轴流风机和混流风机配合通风三种方式进行试验,通过降温、保水、能耗、效益几方面的对比,得出轴流风机降温效果不理想;离心风机虽然降温效果好、速度快,但降温能耗大且不能保水;轴流风机与混流风机配合通风降温的效果好,能保水,同时能减少能耗,单位能耗比离心风机通风节能0.024 kW.h/℃.t,每吨粮食通风节约成本0.26元。  相似文献   

12.
为了解决一般深层粮堆通风干燥中存在的水分垂直分层问题 ,开发了移动组合式立体通风系统 ,并应用该系统在江西南昌进行了稻谷通风干燥试验。试验原粮 15 33t,平均水分 17.4 %。从 2 0 0 3年 1月 2 5日到 4月 2 4日 ,利用地上笼风道通风 198小时 ,移动组合式立体通风 2 0 0小时 ,各层水分分别降低为表层 15 .3% ,上层 14 .7% ,中层 13.7% ,下层14 .4 % ,全仓平均 14 .5 % ,水分梯度小于 0 .6 % /m粮层 ,各层水分最大相差 1.6 % ,明显改善了水分的垂直分层现象。试验共耗电 190 6 8kW·h ,单位能耗 0 .37kW·h/kg水。干燥前后稻谷的发芽率等品质指标无明显变化 ,较好地保持了粮食的原始品质。  相似文献   

13.
利用机械通风降低当年新入库粮食温度是保证粮食安全储藏的主要措施,选择合适风量与风压的通风机是确保粮食达到安全储存、节能降耗、绿色环保目的的关键,我库选取斜流风机降低新入库粮粮温,试验证明斜流风机兼具离心风机与轴流风机的优点,取得了较好的降温效果。  相似文献   

14.
立筒仓通过仓储技术升级改造,提高了筒仓气密性,有效地解决了通风降温难、熏蒸效果差等技术难题。试验结果表明,改造后的筒仓杀虫率达100%,单位用药量3 g/m3,机械通风降温单位能耗0.03 kW.h/t.℃均低于平房仓的相应数值,达到了筒仓改造的预期效果,为南方地区筒仓改造积累了成功经验。  相似文献   

15.
高大钢板平房仓地上笼机械通风技术的应用试验   总被引:1,自引:0,他引:1  
结合本地气候与储粮特点进行高大钢板平房仓地上笼机械通风技术应用试验。结果表明 ,在冬季干冷天气相对较短的时间内 ,采用间歇式机械通风 ,能够取得较好的通风降温效果 ,其单位能耗可控制在 0 .0 4kW·h/℃ t以内。粮温梯度由 1℃ /m降为 0 .4℃ /m粮层厚度 ,粮食水分梯度由 0 .15 % /m降至 0 .0 5 % /m ,粮堆温度和水分分布更加均匀 ,对安全储粮更为有利  相似文献   

16.
试验采用四个不同通风系统,利用环境空气干燥玉米,在玉米原始水分为16.53%~17.52%,堆高为2.2~2.5米,气温为4.66~13℃条件下,单位通风量为51~95.3米~3/吨·时,单位电耗为0.17~0.48度/吨1%,或0.015~0.041度/活化公斤水,间断通风31.5~46小时,玉米即可被均匀地干燥到安全水分以内.这项技术对高水分玉米产区具有推广应用价值.  相似文献   

17.
装粮前对仓房原有通风系统进行改造,安装两组山墙立式风道,在粮面薄膜密封情况下开展横向冬季通风降温,平均粮温由29℃降低至12.5℃,单位能耗0.056 kW.h/(℃.t),储粮安全。  相似文献   

18.
在普通房式仓中,采用箱式空气分配器离心式风机,对水分偏高的小麦进行分段降温通风,通风结束后,粮食在一年的储藏期间,上层最高温度为23.4℃、中层最高温度为18℃、下层最高温度为15℃,基本上达到了准低温储粮,粮情一直保持安全稳定。同时降温通风的单位耗能为0.055kW·h/℃t,大大节约了保管费用。  相似文献   

19.
玉米就仓干燥试验   总被引:2,自引:1,他引:1  
采用移动组合通风系统进行了玉米就仓干燥试验,水分从15.3%降至14.2%,单位能耗2.66kw·h/1%·t,全仓水分由干燥前的很不均匀到干燥后分布相对均匀,保证了粮食安全,干燥成本低于人工晾晒,综合效益显著。根据实际通风效果将整个通风过程分为六个阶段,分析了移动组合通风各阶段的粮食温度变化和粮食水分转移规律。  相似文献   

20.
选用功率较小的储藏物冷却机与负压通风相结合,对福建漳州地区的粮面压盖稻谷仓进行降温冷却,通过改变粮面压盖方式实现冷却的均匀性和彻底性.累计运行时间112.7 h,降温3.3℃,水分变化为0.1%,达到了保水降温的效果.运行期间的降温单位能耗为0.47 kW·h/℃·t,符合《谷物冷却机低温储粮技术规程》的规定,结束降温后粮面压盖延缓了粮温复温.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号