首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we analyzed and discussed the spatial-temporal change patterns and the driving mechanisms of net primary productivity(NPP)in the Qinghai–Tibet Plateau from 2000 to 2015 based on the gravity center and correlation coefficient models.Subsequently,we quantitatively distinguished the relative effects of climate change(such as precipitation,temperature and evapotranspiration)and human activities(such as grazing and ecological construction)on the NPP changes using scenario analysis and Miami model based on the MOD17A3 and meteorological data.The average annual NPP in the Qinghai–Tibet Plateau showed a decreasing trend from the southeast to the northwest during 2000–2015.With respect to the inter-annual changes,the average annual NPP exhibited a fluctuating upward trend from 2000 to 2015,with a steep increase observed in 2005 and a high fluctuation observed from 2005 to 2015.In the Qinghai–Tibet Plateau,the regions with the increase in NPP(change rate higher than 10%)were mainly concentrated in the Three-River Source Region,the northern Hengduan Mountains,the middle and lower reaches of the Yarlung Zangbo River,and the eastern parts of the North Tibet Plateau,whereas the regions with the decrease in NPP(change rate lower than–10%)were mainly concentrated in the upper reaches of the Yarlung Zangbo River and the Ali Plateau.The gravity center of NPP in the Qinghai–Tibet Plateau has moved southwestward during 2000–2015,indicating that the increment and growth rate of NPP in the southwestern part is greater than those of NPP in the northeastern part.Further,a significant correlation was observed between NPP and climate factors in the Qinghai–Tibet Plateau.The regions exhibiting a significant correlation between NPP and precipitation were mainly located in the central and eastern Qinghai–Tibet Plateau,and the regions exhibiting a significant correlation between NPP and temperature were mainly located in the southern and eastern Qinghai–Tibet Plateau.Furthermore,the relative effects of climate change and human activities on the NPP changes in the Qinghai–Tibet Plateau exhibited significant spatial differences in three types of zones,i.e.,the climate change-dominant zone,the human activity-dominant zone,and the climate change and human activity interaction zone.These research results can provide theoretical and methodological supports to reveal the driving mechanisms of the regional ecosystems to the global change in the Qinghai–Tibet Plateau.  相似文献   

2.
Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore, integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change (LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period (2000-2015) and in the future (2020-2050). An improved Markov-Cellular Automata (Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios (historical scenario (HS), ecological protection scenario (EPS), and urban expansion scenario (UES)) and two climate change scenarios (RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period (2000-2015) and in the future (2020-2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×103 km2/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×106 mm and water retention increased by 0.09×106 mm in the historical period (2000-2015), especially in the Interior drainage zone and its surrounding areas. In the future (2020-2050), the pixel means of water yield is higher under RCP4.5 scenario (96.63 mm) than under RCP8.5 scenario (95.46 mm), and the pixel means of water retention is higher under RCP4.5 scenario (1.95 mm) than under RCP8.5 scenario (1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×106 mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios.  相似文献   

3.
利用草地生态系统健康评价CVOR综合指数,对巴音布鲁克高寒草原生态系统2004—2012年健康状态进行评价与退化分级研究,并对引起CVOR变化的内在驱动力因素进行探讨。结果表明:(1)研究区高寒草原生态系统健康状况由一般病态(2004年CVOR=0.58)逐渐恢复为健康状态(2012年CVOR=0.72);退化状况由强度退化恢复为中度退化,但局部仍存在强度退化;(2)降水是高寒草原生态系统CVOR指数的主要限制因子,降水也是除基况外各分指数变化的重要驱动因素;在气候变化背景下,CVOR指数将上升;(3)放牧改变了围栏外的群落功能组分,围封可以改善高寒草原生态系统的健康状况,有利于植被的正向演替,过度放牧是影响高寒草原恢复和演替的重要因素。总体上,降水和放牧是影响研究区高寒草原健康状况的主要原因。  相似文献   

4.
基于CRU资料的中亚地区气候特征   总被引:3,自引:1,他引:3  
黄秋霞  赵勇  何清 《干旱区研究》2013,30(3):396-403
基于中亚地区1971-2000年的CRU资料,利用一元线性回归法,分析中亚地区30 a的气候变化特征。结果表明:土库曼斯坦和乌兹别克斯坦的沙漠地区是中亚最为干旱的地区,也是气温最高的地区。塔吉克斯坦和吉尔吉斯斯坦冬季和春季降水多,夏季和秋季降水少,气温变化幅度相对较小。哈萨克斯坦的降水呈现西多东少,且主要集中在夏季,气温变化幅度较大,且西暖东冷。中亚地区气温年较差较小。新疆与中亚五国的气候有明显差异,新疆降水主要集中在夏季的天山山区,气温增暖明显,最高和最低气温与中亚西部的变化趋势相反。  相似文献   

5.
Fang HAN 《干旱区科学》2015,7(2):251-263
 Variations in temperature and precipitation affect local ecosystems. Considerable spatial and temporal heterogeneity exists in arid ecosystems such as desert steppes. We analyzed the spatiotemporal dynamics of climate and vegetation phenology in the desert steppe of Inner Mongolia, China, using meteorological data from 11 stations (1961–2010) and phenology data from 6 ecological stations (2004–2012). We also estimated the gross primary production for the period of 1982–2009 and found that the annual mean temperature increased at a rate of 0.47ºC/decade during 1961–2010, with the last 10 years being consistently warmer than the 50-year mean. The most significant warming occurred in winters. Annual precipitation slightly decreased during the 50-year period, with summer precipitation experiencing the highest drop in the last 10 years, and spring precipitation, a rise. Spatially, annual precipitation increased significantly in the northeast and eastern central area of the region next to the typical steppe. From 2004 to 2012, vegetation green-up and senescence date advanced in the area, shortening the growing season. Consequently, the primary productivity of the desert steppe decreased along precipitation gradient from southeast to northwest. Temporally, productivity increased during the period of 1982–1999 and significantly decreased after 2000. Overall, the last decade witnessed the most dramatic climatic changes that were likely to negatively affect the desert steppe ecosystem. The decreased primary productivity, in particular, decreases ecosystem resilience and impairs the livelihood of local farmers and herdsmen.  相似文献   

6.
气候变暖对典型草原区降水时空分布格局的影响   总被引:4,自引:0,他引:4  
立足于全球变暖对内蒙古典型草原区降水时空变化影响的研究,预测全球变化可能带来的后果,为良性的生态系统服务提供理论依据。基于1971-2000年锡林浩特市和阿巴嘎旗两个气象台站的平均温度和锡林郭勒盟境内16个气象站点的降水资料,结合地理信息系统技术,系统分析了气候变暖对典型草原区降水时空分布格局的影响。初步研究结果表明:气温变化过程和全球变暖的趋势相一致,特别是20世纪90年代气温上升变暖趋势最为强烈。在全球气候变暖的背景下,研究区的降雨量受东南季风的影响呈现由东南向西北递减的分布规律。但区域降雨存在明显的年代际变化特征,各区域降水变化差异显著,从东南到西北变化的幅度减小。30年来研究区的降雨量变化表现出时间、空间上的不规则性,表明全球气候变化对草原区过去30年的降雨影响不显著,没有达到可识别的程度。  相似文献   

7.
青海省土地利用变化对生态系统服务价值的影响研究   总被引:2,自引:0,他引:2  
以1999年、2006年、2013年3年期青海省土地利用变更调查数据为基础,采用生态系统服务价值定量评估模型、土地利用动态度及敏感性指数对青海省土地利用变化情况及其对生态系统服务价值的影响情况进行分析。结果表明:(1)1999—2013年间,青海省林地、牧草地、园地及建设用地呈增长趋势;耕地、水域及未利用土地呈减少趋势。(2)区域生态系统服务总价值总体呈现出增长趋势,由1999年的4 477.29×108元提高至2013年的4 507.07×108元。研究期间,牧草地、林地、水域面积变化对区域生态系统服务价值起着决定性的作用,3类土地利用类型生态服务价值占总价值的96%以上。(3)各项生态系统服务功能中,水源涵养、土壤形成与保护及废物处理功能贡献率最大,表明青海省生态系统的服务性功能远高于生产性功能。(4)研究区生态系统服务价值对生态服务价值系数缺乏弹性,研究结果具有可信性。  相似文献   

8.
BI Xu  LI Bo  NAN Bo  FAN Yao  FU Qi  ZHANG Xinshi 《干旱区科学》2018,10(4):612-627
Soil organic carbon(SOC) and soil total nitrogen(STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosystem processes and global climate feedbacks. Grassland ecosystems of Funyun County in the southern foot of the Altay Mountains are characterized by complex topography, suggesting large variability in the spatial distribution of SOC and STN. However, there has been little investigation of SOC and STN on grasslands in arid regions with a mountain-basin structure. Therefore, we investigated the characteristics of SOC and STN in different grassland types in a mountain-basin system at the southern foot of the Altai Mountains, north of the Junggar Basin in China, and explored their potential influencing factors and relationships with meteorological factors and soil properties. We found that the concentrations and storages of SOC and STN varied significantly with grassland type, and showed a decreasing trend along a decreasing elevation gradient in alpine meadow, mountain meadow, temperate typical steppe, temperate steppe desert, and temperate steppe desert. In addition, the SOC and STN concentrations decreased with depth, except in the temperate desert steppe. According to Pearson's correlation values and redundancy analysis, the mean annual precipitation, soil moisture content and soil available N concentration were significantly positively correlated with the SOC and STN concentrations. In contrast, the mean annual temperature, p H, and soil bulk density were significantly and negatively correlated with the SOC and STN concentrations. The mean annual precipitation and mean annual temperature were the primary factors related to the SOC and STN concentrations. The distributions of the SOC and STN concentrations were highly regulated by the elevation-induced differences in meteorological factors. Mean annual precipitation and mean annual temperature together explained 97.85% and 98.38% of the overall variations in the SOC and STN concentrations, respectively, at soil depth of 0–40 cm, with precipitation making the greatest contribution. Our results provide a basis for estimating and predicting SOC and STN concentrations in grasslands in arid regions with a mountain-basin structure.  相似文献   

9.
亚洲中部干旱区降水异常的大气环流特征   总被引:4,自引:1,他引:3  
亚洲中部干旱区(中亚五国和新疆)是地中海气候与东亚季风气候的过渡带,区域天气气候与欧洲和东亚季风区迥异,具有世界独特的干旱区生态气候模式,即山地森林草原—盆地平原绿洲寓于荒漠,并与荒漠共存的生态气候地理格局。天气气候受高、中、低纬环流的共同影响,区域内部差异很大,形成多背景、多因子、多尺度影响下的极具代表性的气象灾害孕育和成灾环境。亚洲中部干旱区光热资源丰富、蒸发量大、气温变化剧烈,而降水稀少,且分布极不均匀,天山山脉的中西段是降水高值区,近百年来整体表现为增暖、增湿趋势。高、中、低纬系统和中亚低值系统的活跃,共同造就了中亚东部(新疆)降水年代际和年际异常增多。西亚西风急流是联系高、中、低纬环流系统相互作用的纽带。目前,该区域气象综合观测网建设不能满足应对气候变化的需求,同时对区域特有的环流系统、灾害性天气气候发生规律和形成机理、高分辨率区域数值模式、地—气相互作用对区域天气气候的影响、气候变化预估等方面的研究也较薄弱,开展上述研究对"丝绸之路经济带"可持续发展具有重要科学意义和战略价值。  相似文献   

10.
黄河源地区植被净初级生产力对气候变化的响应   总被引:2,自引:1,他引:1  
基于黄河源区1959—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Thornthwaite Memorial模型计算了50 a植被净初级生产力(NPP),分析其年际和年代际变化特征及其对气候变化的响应。结果表明:1959—2008年间,研究区年NPP变化呈显著上升趋势,NPP变化曲线线性拟合倾向率在95.502~190.72 kg/(hm2.10a)之间,20世纪90年代后NPP较高。20世纪70年代表现为"冷干型"气候特征,NPP距平百分率偏少1.1%~2.1%;2001—2008年均为"暖湿型"气候特征,NPP距平百分率偏多2.1%~4.5%。影响黄河源区NPP变化的主要气候因子是降水量、最大蒸散量和平均最低气温。"暖湿型"气候对植被净生产力增加最有利,黄河源区NPP可增加5.5%~8.5%。而"冷干型"气候造成植被净生产力下降5%~9%。若2050年在"暖湿型"气候情景下,黄河源区未来NPP较多年平均值增加7%~17%。  相似文献   

11.
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.  相似文献   

12.
为了探讨近30 a来我国干旱区荒漠植被的净初级生产力(NPP)及其与水热因子相关性随时间的变化,运用CASA(Carnegie Ames Stanford approach)模型估算我国荒漠植被1982—2015年生长季的NPP,并运用线性回归和GIS空间分析方法分析了NPP的时空变化特征,利用滑动相关系数分析了荒漠植被NPP与水热因子的关系。结果表明:① 单位面积NPP均值为42 g·m-2·a-1,NPP整体水平较低。空间上呈西北部、东部边缘较高,中部、南部和中东部较低的分布特征。② 荒漠植被NPP年均总量为5.783×1013g·a-1。从荒漠植被NPP的年际变化来看,1982—2015年中国荒漠植被NPP总量以1.64×1012g·(10a)-1的线性速率(P=0.054)上升,荒漠植被生长状况总体上不断改善,但总量趋势呈现阶段性变化,1982—1993年荒漠植被NPP总量呈极显著增长态势(1.25×1012 g·a-1,P<0.01); 1993—2006年NPP总量呈极显著降低态势(-6.42×1011 g·a-1,P<0.01); 2006—2015年NPP总量缓慢增长(1.70×1011 g·a-1,P>0.05)。从空间变化来看,47.65%的荒漠植被NPP呈增加态势,主要分布在阿拉善高原、天山北麓、塔里木盆地西部边缘、柴达木盆地的东南边缘、阿尔金山南麓和昆仑山脉。③ 从荒漠植被NPP与各气候因子之间的相关关系随时间的变化来看,NPP与气温的滑动相关系数随时间的变化保持为负相关,与降水、干燥度的滑动相关系数保持为正相关,与太阳总辐射的滑动相关系数随时间变化并未表现出显著的变化趋势。总体上,荒漠植被与水热因子的相关关系在研究时段均有进一步减弱的态势,即荒漠植被NPP对气候因子的变化愈来愈不敏感。  相似文献   

13.
生态保护区的景观格局演变对区域生态服务价值变化影响显著。基于对秦岭山区商洛市1990年、2000年、2009年3时段TM影像的解译结果对研究区1990年-2009年景观指数变化进行分析,得出其景观格局演变规律。运用生态系统服务价值估算方法,计算出景观格局演变导致的研究区生态系统服务价值变化量。结果表明:商洛市19年间景观分离度逐渐降低,聚集度逐渐升高,林地景观范围逐步扩大;生态系统服务价值量快速提高,其价值量也不断升高,但其与全局价值估算结果差异较大;不同估算模型不影响价值量的时空分布研究。研究说明自然景观被干扰并不意味着生态服务功能的退化,生态价值估算应从整体向局部细化。同时,政策导向是研究区生态环境改善的主要驱动力。  相似文献   

14.
LUO Jing 《干旱区科学》2022,14(4):411-425
Land use/land cover (LULC) is an important part of exploring the interaction between natural environment and human activities and achieving regional sustainable development. Based on the data of LULC types (cropland, forest land, grassland, built-up land, and unused land) from 1990 to 2015, we analysed the intensity and driving factors of land use/cover change (LUCC) in the Yarlung Zangbo River, Nyang Qu River, and Lhasa River (YNL) region, Qinghai-Tibet Plateau of China, using intensity analysis method, cross-linking table method, and spatial econometric model. The results showed that LUCC in the YNL region was nonstationary from 1990 to 2015, showing a change pattern with "fast-slow-fast" and "U-shaped". Built-up land showed a steady increase pattern, while cropland showed a steady decrease pattern. The gain of built-up land mainly came from the loss of cropland. The transition pattern of LUCC in the YNL region was relatively single and stable during 1990-2015. The transition pattern from cropland and forest land to built-up land was a systematic change process of tendency and the transition pattern from grassland and unused land to cropland was a systematic change process of avoidance. The transition process of LUCC was the result of the combined effect of natural environment and social economic development in the YNL region. This study reveals the impact of ecological environment problems caused by human activities on the land resource system and provides scientific support for the study of ecological environment change and sustainable development of the Qinghai-Tibet Plateau.  相似文献   

15.
YAO Linlin 《干旱区科学》2022,14(5):521-536
Hydrothermal condition is mismatched in arid and semi-arid regions, particularly in Central Asia (including Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan), resulting many environmental limitations. In this study, we projected hydrothermal condition in Central Asia based on bias-corrected multi-model ensembles (MMEs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios (SSP126 (SSP1-RCP2.6), SSP245 (SSP2-RCP4.5), SSP460 (SSP4-RCP6.0), and SSP585 (SSP5-RCP8.5)) during 2015-2100. The bias correction and spatial disaggregation, water-thermal product index, and sensitivity analysis were used in this study. The results showed that the hydrothermal condition is mismatched in the central and southern deserts, whereas the region of Pamir Mountains and Tianshan Mountains as well as the northern plains of Kazakhstan showed a matched hydrothermal condition. Compared with the historical period, the matched degree of hydrothermal condition improves during 2046-2075, but degenerates during 2015-2044 and 2076-2100. The change of hydrothermal condition is sensitive to precipitation in the northern regions and the maximum temperatures in the southern regions. The result suggests that the optimal scenario in Central Asia is SSP126 scenario, while SSP585 scenario brings further hydrothermal contradictions. This study provides scientific information for the development and sustainable utilization of hydrothermal resources in arid and semi-arid regions under climate change.  相似文献   

16.
Spatio-temporal variations of vegetation phenology, e.g. start of green-up season(SOS) and end of vegetation season(EOS), serve as important indicators of ecosystems. Routinely processed products from remotely sensed imagery, such as the normalized difference vegetation index(NDVI), can be used to map such variations. A remote sensing approach to tracing vegetation phenology was demonstrated here in application to the Inner Mongolia grassland, China. SOS and EOS mapping at regional and vegetation type(meadow steppe, typical steppe, desert steppe and steppe desert) levels using SPOT-VGT NDVI series allows new insights into the grassland ecosystem. The spatial and temporal variability of SOS and EOS during 1998–2012 was highlighted and presented, as were SOS and EOS responses to the monthly climatic fluctuations. Results indicated that SOS and EOS did not exhibit consistent shifts at either regional or vegetation type level; the one exception was the steppe desert, the least productive vegetation cover, which exhibited a progressive earlier SOS and later EOS. Monthly average temperature and precipitation in preseason(February, March and April) imposed most remarkable and negative effects on SOS(except for the non-significant impact of precipitation on that of the meadow steppe), while the climate impact on EOS was found to vary considerably between the vegetation types. Results showed that the spatio-temporal variability of the vegetation phenology of the meadow steppe, typical steppe and desert steppe could be reflected by the monthly thermal and hydrological factors but the progressive earlier SOS and later EOS of the highly degraded steppe desert might be accounted for by non-climate factors only, suggesting that the vegetation growing period in the highly degraded areas of the grassland could be extended possibly by human interventions.  相似文献   

17.
Knowledge of soil carbon(C) distribution and its relationship with the environment can improve our understanding of its biogeochemical cycling and help to establish sound regional models of C cycling. However, such knowledge is limited in environments with complex landscape configurations. In this study, we investigated the vertical distribution and storage of soil organic carbon(SOC) and soil inorganic carbon(SIC) in the 10 representative landscapes(alpine meadow, subalpine shrub and meadow, mountain grassland, mountain forest, typical steppe, desert steppe, Hexi Corridor oases cropland, Ruoshui River delta desert, Alxa Gobi desert, and sandy desert) with contrasting bioclimatic regimes in the Heihe River Basin, Northwest China. We also measured the 87 Sr/86 Sr ratio in soil carbonate to understand the sources of SIC because the ratio can be used as a proxy in calculating the contribution of pedogenic inorganic carbon(PIC) to total SIC. Our results showed that SOC contents generally decreased with increasing soil depth in all landscapes, while SIC contents exhibited more complicated variations along soil profiles in relation to pedogenic processes and parent materials at the various landscapes. There were significant differences of C stocks in the top meter among different landscapes, with SOC storage ranging from 0.82 kg C/m~2 in sandy desert to 50.48 kg C/m~2 in mountain forest and SIC storage ranging from 0.19 kg C/m~2 in alpine meadow to 21.91 kg C/m~2 in desert steppe. SIC contributed more than 75% of total C pool when SOC storage was lower than 10 kg C/m~2, and the proportion of PIC to SIC was greater than 70% as calculated from Sr isotopic ratio, suggesting the critical role of PIC in the C budget of this region. The considerable variations of SOC and SIC in different landscapes were attributed to different pedogenic environments resulted from contrasting climatic regimes, parent materials and vegetation types. This study provides an evidence for a general trade-off pattern between SOC and SIC, showing the compensatory effects of environmental conditions(especially climate) on SOC and SIC formation in these landscapes. This is largely attributed to the fact that the overall decrease in temperature and increase in precipitation from arid deserts to alpine mountains simultaneously facilitate the accumulation of SOC and depletion of SIC.  相似文献   

18.
Climate change and human activities can influence vegetation net primary productivity (NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural values, is one of the most susceptible regions to climate change and human disturbancesin the world. To assess the impact of climate change and human activities on vegetation dynamics in the grassland ecosystems ofthe northeastern Qinghai-Tibet Plateau, we applied a time-series trend analysis to normalized difference vegetation index (NDVI) datasets from 2000 to 2015 and compared these spatiotemporal variations with trends in climatic variables over the same time period. The constrained ordination approach (redundancy analysis) was used to determine which climatic variables or human-related factors mostly in?uenced the variation of NDVI. Furthermore, in order to determine whether current conservation measures and programs are effectivein ecological protection and reconstruction, we divided the northeastern Qinghai-Tibet Plateau into two parts: the Three-River Headwater conservation area (TRH zone) in the south and the non-conservation area (NTRH zone) in the north. The results indicatedan overall (73.32%)increasing trend of vegetation NPP in grasslands throughout the study area. During the period 2000-2015, NDVI in the TRH and NTRH zones increased at the rates of 0.0015/aand 0.0020/a, respectively.Specifically, precipitation accounted for 9.2% of the total variation in NDVI, while temperature accounted for 13.4%. In addition, variation in vegetation NPP of grasslands responded not only to long- and short-term changes in climate, as conceptualized in non-equilibrium theory, but also to the impact of human activities and their associated perturbations. The redundancy analysis successfully separated the relative contributions of climate change and human activities, of whichvillage populationand agricultural gross domestic product were the two most important contributors to the NDVI changes, explaining 17.8% and 17.1% of the total variationof NDVI (with the total contribution >30.0%), respectively. The total contributionpercentages of climate change and human activitiesto the NDVI variation were27.5% and 34.9%, respectively, inthe northeastern Qinghai-Tibet Plateau. Finally, our study shows that the grassland restoration in the study area was enhanced by protection measures and programs in the TRH zone, which explained 7.6% of the total variation in NDVI.  相似文献   

19.
亚洲中部干旱区湖泊的地域分异性研究   总被引:2,自引:0,他引:2  
湖泊是干旱区气候与环境变化的敏感指示器,了解干旱区湖泊的空间分布和变化特征,有利于正确分析和评估气候变化和人类活动对干旱区水资源的影响。采用2010年的Landsat 遥感数据资料,对新疆、中亚五国及其毗邻高山地区的湖泊制图,并分析该区域内湖泊的数量、面积的时空分布特征。研究表明:① 2010年研究区域内大于0.01 km2以上的湖泊总数为30 952个,总面积为496 674.35 km2,其中哈萨克斯坦北部、阿尔泰山地区和昆仑山南麓是湖泊富集的地区。② 湖泊数量与湖泊面积呈幂指数关系,湖泊面积每升高一个10的量级,该量级内的湖泊数量下降4~6倍,湖泊面积增加1~2倍,与全球的湖泊分布相比,属于湖泊分布相对稀少的地区。③ 湖泊数量在纬度带的空间分布相对均一,大型湖泊集中分布在41°~44°、46°和48°~50°的纬度带上;低海拔地区的湖泊数量多,面积大,高海拔地区湖泊数量多,面积小;山区、河谷湿地和哈萨克斯坦北部草原湖泊数量多;荒漠区湖泊分布稀少。④近20 a来,高山地区湖泊与平原地区湖泊呈相反的变化模式,高山地区湖泊处于稳定或快速扩张态势,而平原地区的湖泊剧烈萎缩。  相似文献   

20.
In recent years, the streamflow of the Laohahe Basin in China showed a dramatic decrease during the rainy season as a result of climate change and/or human activities. The objective of this work was to document significant streamflow changes caused by land use and land cover (LULC) changes and to quantify the impacts of the observed changes in Laohahe Basin. in the study area, the observed streamflow has been influenced by LULC changes, dams, and irrigation from rivers, industry, livestock and human consumption. Most importantly, the growth of population and gross domestic product (GDP) accompanied by the growth in industrial and agricultural activities, which led to LULC changes with increased residential land and cropland and decreased grassland since 2000s. Statistical methods and Variable Infiltration Capacity (VIC) hydrological model were used to estimate the effects of climate change and LULC changes on streamflow and evaportranspiration lET). First, the streamflow data of the study area were divided into three sub-periods according to the Pettitt test. The hydrological process was then simulated by VIC model from 1964 to 2009. Furthermore, we compared the simulated results based on land use scenarios in 1989, 1999 and 2007, respectively for exploring the effect of LULC changes on the spatio-temporal distribution of streamflow and ET in the Laohahe Basin. The results suggest that, accompanied with climate change, the LULC changes and human water consumption appeared to be the most likely factors contributing to the sig- nificant reduction in streamflow in the Laohahe Basin by 64% from1999 to 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号